PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1996 | 75 | 3 | 235-250
Tytuł artykułu

Kummer type congruences and Stickelberger subideals

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Czasopismo
Rocznik
Tom
75
Numer
3
Strony
235-250
Opis fizyczny
Daty
wydano
1996
otrzymano
1995-05-05
poprawiono
1995-10-31
Twórcy
autor
  • Department of Mathematics, Science University of Tokyo, Noda, Chiba 278, Japan
  • Department of Mathematics, Faculty of Science, Masaryk University, 662 95 Brno, Czech Republic
Bibliografia
  • [1] T. Agoh, On the criteria of Wieferich and Mirimanoff, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 49-52.
  • [2] T. Agoh, On the Kummer-Mirimanoff congruences, Acta Arith. 55 (1990), 141-156.
  • [3] T. Agoh, Some variations and consequences of the Kummer-Mirimanoff congruences, Acta Arith. 62 (1992), 73-96.
  • [4] G. Benneton, Sur le dernier théorème de Fermat, Ann. Sci. Univ. Besançon Math. 3 (1974), 15pp.
  • [5] P. J. Davis, Circulant Matrices, Wiley, New York, 1979.
  • [6] H. G. Folz and H. G. Zimmer, What is the rank of the Demjanenko matrix?, J. Symbolic Comput. 4 (1987), 53-67.
  • [7] R. Fueter, Kummers Kriterium zum letzten Theorem von Fermat, Math. Ann. 85 (1922), 11-20.
  • [8] F. Hazama, Demjanenko matrix, class number, and Hodge group, J. Number Theory 34 (1990), 174-177.
  • [9] F. Hazama, Hodge cycles on the Jacobian variety of the Catalan curve, preprint, 1994.
  • [10] K. Iwasawa, A class number formula for cyclotomic fields, Ann. of Math. 76 (1962), 171-179.
  • [11] E. E. Kummer, Einige Sätze über die aus den Wurzeln der Gleichung $α^λ = 1$ gebildeten complexen Zahlen, für den Fall, daß die Klassenanzahl durch λ theilbar ist, nebst Anwendung derselben auf einen weiteren Beweis des letzten Fermat'schen Lehrsatzes, Abhandl. Königl. Akad. Wiss. Berlin 1857, 41-74; Collected Papers, Vol. I, 639-692.
  • [12] M. Lerch, Zur Theorie des Fermatschen Quotienten $(a^{p-1}-1)/p = q(a)$, Math. Ann. 60 (1905), 471-490.
  • [13] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, New York, 1979.
  • [14] J. W. Sands and W. Schwarz, A Demjanenko matrix for abelian fields of prime power conductor, J. Number Theory 52 (1995), 85-97.
  • [15] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234.
  • [16] L. Skula, A remark on Mirimanoff polynomials, Comment. Math. Univ. St. Paul. (Tokyo) 31 (1982), 89-97.
  • [17] L. Skula, Some bases of the Stickelberger ideal, Math. Slovaca 43 (1993), 541-571.
  • [18] L. Skula, On a special ideal contained in the Stickelberger ideal, J. Number Theory, to appear.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav75i3p235bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.