ArticleOriginal scientific text
Title
Problems and results on αp - βq
Authors 1, 1, 1
Affiliations
- School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400 005, India
Keywords
primes, inequalities, Harman's result, Selberg's sieve, Brun's sieve
Bibliography
- E. Bombieri and H. Davenport, Small differences between prime numbers, Proc. Roy. Soc. London Ser. A 293 (1966), 1-18.
- H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
- G. Harman, Primes in short intervals, Math. Z. 180 (1982), 335-348.
- G. Harman, Almost primes in short intervals, Math. Ann. 258 (1981), 107-112.
- A. Ivić, The Riemann Zeta-function, Wiley-Interscience, New York, 1985.
- L. F. Kondakova and N. I. Klimov, Certain additive problems, Volzh. Mat. Sb. 7 (1969), 41-44 (in Russian).
- S. Lou and Q. Yao, A Chebychev's type of prime number theorem in a short interval II, Hardy-Ramanujan J. 15 (1992), 1-33.
- H. L. Montgomery and R. C. Vaughan, The exceptional set of Goldbach's problem, Acta Arith. 27 (1975), 353-370.
- Y. Motohashi, A note on almost primes in short intervals, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), 225-226.
- K. Ramachandra, Two remarks in prime number theory, Bull. Soc. Math. France 105 (1977), 433-437.
- K. Ramachandra, Viggo Brun (13-10-1885 to 15-8-1978), Math. Student 49 (1981), 97-95.
- K. Ramachandra, A. Sankaranarayanan and K. Srinivas, Ramanujan's lattice point problem, prime number theory and other remarks, Hardy-Ramanujan J. 19 (1996), 2-56.
- H.-E. Richert, Sieve Methods, Lecture Notes 55, Tata Institute of Fundamental Research, Bombay, 1976.
- A. Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), 87-105.
- S. Srinivasan, A note on |αp -q|, Acta Arith. 41 (1982), 15-18.
- D. Wolke, Fast-Primzahlen in kurzen Intervallen, Math. Ann. 244 (1979), 233-242.