ArticleOriginal scientific text
Title
Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture
Authors 1
Affiliations
- Department of Mathematics, University of Science and Technology of China, Hefei, 230026, China
Bibliography
- R. Alter, T. B. Curtz and K. K. Kubota, Remarks and results on congruent numbers, in: Proc. 3rd South Eastern Conf. Combin., Graph Theory and Comput., 1972, Florida Atlantic Univ., Boca Raton, Fla., 1972, 27-35.
- J. E. Cremona and R. W. Odoni, Some density results for negative Pell equations; an application of graph theory, J. London Math. Soc. 39 (1989), 16-28.
- G. P. Gogišvili, The number of representations of numbers by positive quaternary diagonal quadratic forms, Sakharth SSR Mecn. Math. Inst. Šrom. 40 (1971), 59-105 (MR 49#2536 (=E28-203)) (in Russian).
- N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, 1984.
- J. Lagrange, Nombres congruents et courbes elliptiques, Sém. Delange-Pisot-Poitou, 16e année, 1974/75, no. 16.
- L. Rédei, Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. Reine Angew. Math. 171 (1934), 55-60.
- L. Rédei und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74.
- K. Rubin, Tate-Shafarevich group and L-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), 527-560.
- K. Rubin, The main conjecture for imaginary quadratic fields, Invent. Math. 103 (1991), 25-68.
- P. Serf, Congruent numbers and elliptic curves, in: Computational Number Theory, A. Pethő, M. Pohst, H. C. Williams and H. G. Zimmer (eds.), de Gruyter, 1991, 227-238.
- J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986.
- J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math. 72 (1983), 323-334.