ArticleOriginal scientific text

Title

On a conjecture of R. L. Graham

Authors 1, 2

Affiliations

  1. Institute for Mathematical Sciences, Tharamani P. O., Madras 600 113, India
  2. Department of Mathematics, Princeton University, Princeton, New Jersey 08544, U.S.A.

Bibliography

  1. R. D. Boyle, On a problem of R. L. Graham, Acta Arith. 34 (1978), 163-177.
  2. F. Y. Cheng and C. Pomerance, On a conjecture of R. L. Graham, Rocky Mountain J. 24 (1994), 961-975.
  3. C. Cobeli, M. Vâjâitu and A. Zaharescu, Graham's conjecture under Riemann hypothesis, J. Number Theory 31 (1989), 80-87.
  4. P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monographie No. 28 de L'Enseignement Mathématique, Genève, 1980.
  5. R. L. Graham, Advanced Problem 5749*, Amer. Math. Monthly 77 (1970), 775.
  6. H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134.
  7. H. Riesel, Prime Numbers and Computer Methods for Factorization, Progr. Math. 57, Birkhäuser, 1985.
  8. J. B. Rosser and L. Schoenfeld, Sharper bounds for the Chebyshev functions θ(x) and ψ(x), Math. Comp. 29 (1975), 243-269.
  9. M. Szegedy, The solution of Graham's greatest common divisor problem, Combinatorica 6 (1986), 67-71.
  10. W. Y. Vélez, Some remarks on a number theoretic problem of Graham, Acta Arith. 32 (1977), 233-238.
  11. R. Winterle, A problem of R. L. Graham in Combinatorial Number Theory, in: Proc. of the Louisiana Conference on Combinatorics, Baton Rouge, 1970, 357-361.
  12. A. Zaharescu, On a conjecture of Graham, J. Number Theory 27 (1987), 33-40.
Pages:
1-38
Main language of publication
English
Received
1993-10-27
Accepted
1995-09-24
Published
1996
Exact and natural sciences