ArticleOriginal scientific text

Title

On the number of prime factors of integers of the form ab + 1

Authors 1, 2, 3

Affiliations

  1. Mathematical Institute, Kossuth Lajos University, 4010 Debrecen, Hungary
  2. Mathematical Institute, Hungarian Academy of Sciences, H-1053 Budapest, Hungary
  3. Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Bibliography

  1. E. R. Canfield, P. Erdős and C. Pomerance, On a problem of Oppenheim concerning 'Factorisatio Numerorum', J. Number Theory 17 (1983), 1-28.
  2. H. Davenport, Multiplicative Number Theory, 2nd ed., Graduate Texts in Math. 74, Springer, 1980.
  3. P. Erdős, C. Pomerance, A. Sárközy and C. L. Stewart, On elements of sumsets with many prime factors, J. Number Theory 44 (1993), 93-104.
  4. P. Erdős, C. L. Stewart and R. Tijdeman, Some diophantine equations with many solutions, Compositio Math. 66 (1988), 37-56.
  5. P. Erdős and P. Turán, On a problem in the elementary theory of numbers, Amer. Math. Monthly 41 (1934), 608-611.
  6. J.-H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584.
  7. J.-H. Evertse, The number of solutions of decomposable form equations, to appear.
  8. J.-H. Evertse and K. Győry, Finiteness criteria for decomposable form equations, Acta Arith. 50 (1988), 357-379.
  9. P. X. Gallagher, The large sieve, Mathematika 14 (1967), 14-20.
  10. K. Győry, On the numbers of families of solutions of systems of decomposable form equations, Publ. Math. Debrecen 42 (1993), 65-101.
  11. K. Győry, Some applications of decomposable form equations to resultant equations, Colloq. Math. 65 (1993), 267-275.
  12. K. Győry, C. L. Stewart and R. Tijdeman, On prime factors of sums of integers I, Compositio Math. 59 (1986), 81-88.
  13. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press, 1979.
  14. C. Pomerance, A. Sárközy and C. L. Stewart, On divisors of sums of integers III, Pacific J. Math. 133 (1988), 363-379.
  15. A. Sárközy, Hybrid problems in number theory, in: Number Theory, New York 1985-88, Lecture Notes in Math. 1383, Springer, 1989, 146-169.
  16. A. Sárközy, On sums a + b and numbers of the form ab + 1 with many prime factors, Grazer Math. Ber. 318 (1992), 141-154.
  17. A. Sárközy and C. L. Stewart, On divisors of sums of integers V, Pacific J. Math. 166 (1994), 373-384.
  18. A. Sárközy and C. L. Stewart, On prime factors of integers of the form ab + 1, to appear.
  19. H. P. Schlickewei, S-unit equations over number fields, Invent. Math. 102 (1990), 95-107.
  20. H. P. Schlickewei, The quantitative Subspace Theorem for number fields, Compositio Math. 82 (1992), 245-273.
  21. W. M. Schmidt, The subspace theorem in diophantine approximations, Compositio Math. 69 (1989), 121-173.
  22. C. L. Stewart, Some remarks on prime divisors of sums of integers, in: Séminaire de Théorie des Nombres, Paris, 1984-85, Progr. Math. 63, Birkhäuser, 1986, 217-223.
  23. C. L. Stewart and R. Tijdeman, On prime factors of sums of integers II, in: Diophantine Analysis, J. H. Loxton and A. J. van der Poorten (eds.), Cambridge University Press, 1986, 83-98.
Pages:
365-385
Main language of publication
English
Received
1995-07-10
Accepted
1995-09-07
Published
1996
Exact and natural sciences