ArticleOriginal scientific text

Title

The mean square of the error term in a generalization of Dirichlet's divisor problem

Authors 1

Affiliations

  1. Department of Mathematics, University of Turku, FIN-20500 Turku, Finland

Bibliography

  1. J. L. Hafner, On the representation of the summatory functions of a class of arithmetical functions, in: Analytic Number Theory, M. I. Knopp (ed.), Lecture Notes in Math. 899, Springer, 1981, 148-165.
  2. A. Ivić, The Riemann Zeta-Function, Wiley, New York, 1985.
  3. I. Kiuchi, On an exponential sum involving the arithmetic function σa(n), Math. J. Okayama Univ. 29 (1987), 193-205.
  4. K. Matsumoto and T. Meurman, The mean square of the Riemann zeta-function in the critical strip II, Acta Arith. 68 (1994), 369-382.
  5. K. Matsumoto and T. Meurman, The mean square of the Riemann zeta-function in the critical strip III, Acta Arith. 64 (1993), 357-382.
  6. T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math. Oxford (2) 38 (1986), 337-343.
  7. A. Oppenheim, Some identities in the theory of numbers, Proc. London Math. Soc. (2) 26 (1927), 295-350.
  8. Y.-F. S. Pétermann, Divisor problems and exponent pairs, Arch. Math. (Basel) 50 (1988), 243-250.
  9. E. Preissmann, Sur la moyenne quadratique du terme de reste du problème du cercle, C. R. Acad. Sci. Paris Sér. I 306 (1988), 151-154.
  10. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford University Press, Oxford, 1951.
  11. K.-C. Tong, On divisor problems III, Acta Math. Sinica 6 (1956), 515-541.
  12. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge, 1944
Pages:
351-364
Main language of publication
English
Received
1995-04-12
Accepted
1995-08-16
Published
1996
Exact and natural sciences