ArticleOriginal scientific text

Title

Ergodic properties of generalized Lüroth series

Authors 1, 2, 3, 4

Affiliations

  1. Mathematics Department, University of South Alabama, Mobile, Alabama 36688, U.S.A.
  2. Department of Mathematics, University of Oregon, Corvallis, Oregon 97331, U.S.A.
  3. Universiteit Utrecht, Department of Mathematics, Budapestlaan 6, P.O. Box 80.000, 3508TA Utrecht, the Netherlands
  4. Technische Universiteit Delft, TWI (SSOR), Mekelweg 4, 2628 CD Delft, the Netherlands

Bibliography

  1. [B] J. R. Brown, Ergodic Theory and Topological Dynamics, Academic Press, New York, 1976.
  2. [BJW] W. Bosma, H. Jager and F. Wiedijk, Some metrical observations on the approximation by continued fractions, Indag. Math. 45 (1983), 281-299.
  3. [CFS] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Grundlehren Math. Wiss. 245, Springer, New York, 1982.
  4. [FS] C. Frougny and B. Solomyak, Finite beta-expansions, Ergodic Theory Dynamical Systems 12 (1992), 713-723.
  5. [G] J. Galambos, Representations of Real Numbers by Infinite Series, Lecture Notes in Math. 502, Springer, Berlin, 1982.
  6. [J] H. Jager, On decimal expansions, Zahlentheorie, Berichte aus dem Mathematische Forschungsinstitut Oberwolfach 5 (1971), 67-75.
  7. [JdV] H. Jager and C. de Vroedt, Lüroth series and their ergodic properties, Indag. Math. 31 (1968), 31-42.
  8. S. Kalpazidou, A. Knopfmacher and J. Knopfmacher, Lüroth-type alternating series representations for real numbers, Acta Arith. 55 (1990), 311-322.
  9. S. Kalpazidou, A. Knopfmacher and J. Knopfmacher, Metric properties of alternating Lüroth series, Portugal. Math. 48 (1991), 319-325.
  10. [K] C. Kraaikamp, A new class of continued fraction expansions, Acta Arith. 57 (1991), 1-39.
  11. [Li] P. Liardet, MR: 93m:11077.
  12. [Lu] J. Lüroth, Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe, Math. Ann. 21 (1883), 411-423.
  13. [Pa] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416.
  14. [Pe] O. Perron, Irrationalzahlen, de Gruyter, Berlin, 1960.
  15. [R] V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960) (in Russian); English translation: Amer. Math. Soc. Transl. Ser. 2, 39 (1969), 1-36.
  16. [Sa] T. Šalát, Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen, Czech. Math. J. 18 (1968), 489-522.
  17. [So] B. Solomyak, Personal communication with C. Kraaikamp, Seattle, July 9, 1991.
  18. [V] W. Vervaat, Success Epochs in Bernoulli Trails with Applications in Number Theory, Math. Centre Tracts 42, Amsterdam, 1972.
  19. [W] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, New York, 1982.
Pages:
311-327
Main language of publication
English
Received
1994-12-29
Accepted
1995-08-01
Published
1996
Exact and natural sciences