Download PDF - On a problem of Eisenstein
ArticleOriginal scientific text
Title
On a problem of Eisenstein
Authors 1
Affiliations
- Faculteit Wiskunde en Informatica, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, the Netherlands
Keywords
quadratic units, cubic fields
Bibliography
- W. Bosma and P. Stevenhagen, Density computations for real quadratic units, Math. Comp., to appear.
- H. Cohen and H. W. Lenstra, Jr., Heuristics on class groups of number fields, in: Number Theory, Noordwijkerhout 1983, H. Jager (ed.), Lecture Notes in Math. 1068, Springer, 1984, 33-62.
- H. Cohn and J. C. Lagarias, On the existence of fields governing the 2-invariants of the class groups of ℚ(√dp) as p varies, Math. Comp. 41 (1983), 711-730.
- D. A. Cox, Primes of the Form x²+ny², Wiley-Interscience, 1989.
- H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields, I, Bull. London Math. Soc. 1 (1969), 345-348.
- H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields, II, Proc. Roy. Soc. London A 322 (1971), 405-420.
- G. Eisenstein, Aufgaben, J. Reine Angew. Math. 27 (1844), 86-88; see also: Mathematische Werke, Band I, Chelsea, 111-113.
- H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischen Grundlage, Math. Z. 31 (1930), 565-582.
- A. J. Stephens and H. C. Williams, Some computational results on a problem of Eisenstein, in: Théorie des Nombres - Number Theory, J. W. M. de Koninck and C. Levesque (eds.), de Gruyter, 1992, 869-886.
- P. Stevenhagen, The number of real quadratic fields having units of negative norm, Experiment. Math. 2 (1993), 121-136.
- P. Stevenhagen, A density conjecture for the negative Pell equation, in: Computational Algebra and Number Theory, Sydney 1992, Kluwer, 1995, 187-200.
- P. Stevenhagen, Divisibility by 2-powers of certain quadratic class numbers, J. Number Theory 43 (1993), 1-19.
- K. S. Williams, On the class number of ℚ(√-p) modulo 16, for p ≡ 1 mod 8 a prime, Acta Arith. 39 (1981), 381-398.