ArticleOriginal scientific text

Title

A generalization of a problem of Chebyshev

Authors 1

Affiliations

  1. Department of Mathematics, University of Marburg, Hans-Meerwein-Strasse, Lahnberge, D-35032 Marburg, Germany

Bibliography

  1. P. Erdős, On the greatest prime factor of x_{k=1}f(k), J. London Math. Soc. 27 (1952), 379-384.
  2. P. Erdős and A. Schinzel, On the greatest prime factor of x_{k=1}f(k), Acta Arith. 55 (1990), 191-200.
  3. R. R. Hall and G. Tenenbaum, Divisors, Cambridge University Press, Cambridge, 1988.
  4. J. G. Hinz, Some applications of sieve methods in algebraic number fields, Manuscripta Math. 48 (1984), 117-137.
  5. B. Landreau, A new proof of a theorem of van der Corput, Bull. London Math. Soc. 21 (1989), 366-368.
  6. T. Nagell, Généralisation d'un théorème de Tchebycheff, J. Math. Pures Appl. (8) 4 (1921), 343-356.
  7. G. J. Rieger, Verallgemeinerung der Siebmethode von A. Selberg auf algebraische Zahlkörper. III, J. Reine Angew. Math. 208 (1961), 79-90.
  8. H. Sarges, Eine Anwendung des Selbergschen Siebes auf algebraische Zahlkörper, Acta Arith. 28 (1976), 433-455.
  9. C. L. Siegel, Additive Theorie der Zahlkörper. II, Math. Ann. 88 (1923), 184-210.
  10. G. Tenenbaum, Sur une question d'Erdős et Schinzel, in: A Tribute to Paul Erdős, A. Baker, B. Bollobás, A. Hajnal (eds.), Cambridge University Press, Cambridge, 1990, 405-443.
  11. G. Tenenbaum, Sur une question d'Erdős et Schinzel. II, Invent. Math. 99 (1990), 215-224.
Pages:
207-230
Main language of publication
English
Received
1995-01-08
Accepted
1995-07-15
Published
1996
Exact and natural sciences