ArticleOriginal scientific text

Title

Partitions with numbers in their gaps

Authors 1

Affiliations

  1. Department of Mathematics, University of Illinois at Urbana Champaign, 273 Altgeld Hall, MC-382, 1409 West Green Street, Urbana, Illinois 61801, U.S.A.

Bibliography

  1. K. Alladi and B. Gordon, Generalizations of Schur's partition theorem, Manuscr. Math. 79 (1993), 113-126.
  2. G. E. Andrews, q-series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, CBMS Regional Conf. Ser. in Math. 66, Amer. Math. Soc., Providence, R.I., 1986.
  3. G. E. Andrews, The Theory of Partitions, Encyclopedia Math. Appl., Vol. 2, Addison-Wesley, Reading, 1976. (Reissued: Cambridge University Press, London, 1985.)
  4. D. Bowman, Modified convergence for q-continued fractions defined by functional relations, in: Proc. Rademacher Centenary Conference, to appear.
  5. G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, 1990.
  6. B. Gordon, Some continued fractions of the Rogers-Ramanujan type, Duke Math. J. 32 (1965), 741-748.
  7. M. Hirschhorn, Developments in the theory of partitions, Dissertation, University of New South Wales, 1979.
  8. O. Perron, Die Lehre von den Kettenbrüchen, Vol. 2, Teubner, Stuttgart, 1957.
  9. I. Schur, Zur additiven Zahlentheorie, S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl. 1926, 488-495. (Reprinted in I. Schur, Gessammelte Abhandlungen, Vol. 3, Springer, Berlin, 1973, 43-50.
Pages:
97-105
Main language of publication
English
Received
1994-10-26
Accepted
1995-05-05
Published
1996
Exact and natural sciences