ArticleOriginal scientific text

Title

An effective lower bound for the height of algebraic numbers

Authors 1

Affiliations

  1. Department of Mathematics, City University, Northampton Square, London EC1V 0HB, U.K.

Bibliography

  1. M. J. Bertin et M. Pathiaux-Delefosse, Conjecture de Lehmer et petits nombres de Salem, Queen's Papers in Pure and Appl. Math. 81, Kingston, 1989.
  2. P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355-369.
  3. D. W. Boyd, Reciprocal polynomials having small measure, Math. Comp. 35 (1980), 1361-1377.
  4. D. W. Boyd, Reciprocal polynomials having small measure. II, Math. Comp. 53 (1989), 355-357.
  5. D. C. Cantor and E. G. Straus, On a conjecture of D. H. Lehmer, Acta Arith. 42 (1982), 97-100; corrigendum, Math. Comp., 327.
  6. E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Math. Comp. 34 (1979), 391-401.
  7. A. Dubickas, On a conjecture of A. Schinzel and H. Zassenhaus, Math. Comp. 63 (1993), 15-20.
  8. M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminant d'interpolation, J. Number Theory, to appear.
  9. D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933), 461-479.
  10. R. Louboutin, Sur la mesure de Mahler d'un nombre algébrique, C. R. Acad. Sci. Paris Sér. I 296 (1983), 707-708.
  11. E. M. Matveev, On the measure of algebraic integers, Mat. Zametki 49 (1991), 152-154 (in Russian).
  12. M. Meyer, Le problème de Lehmer: méthode de Dobrowolski et lemme de Siegel 'à la Bombieri-Vaaler', Publ. Math. Univ. P. et M. Curie (Paris VI), 90, Problèmes Diophantiens 1988/89, N°5, 15 p.
  13. G. Poitou, Minorations de discriminants [d'après A.M. Odlyzko ], Séminaire Bourbaki 479, Lecture Notes in Math. 567, Springer, 1977, 136-153.
  14. G. Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n, Acta Arith. 42 (1983), 367-389.
  15. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
  16. A. Schinzel and H. Zassenhaus, A refinement of two theorems of Kronecker, Michigan Math. J. 12 (1965), 81-85.
  17. C. J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull. London Math. Soc. 3 (1971), 169-175.
  18. C. L. Stewart, Algebraic integers whose conjugates lie near the unit circle, Bull. Soc. Math. France 106 (1978), 169-176
Pages:
81-95
Main language of publication
English
Received
1995-01-31
Accepted
1995-05-19
Published
1996
Exact and natural sciences