ArticleOriginal scientific text

Title

On a form of the Erdős-Turán inequality

Authors 1

Affiliations

  1. Department of Mathematics, Michigan Technological University, Houghton, Michigan 49931, U.S.A.

Bibliography

  1. R. C. Baker, Diophantine Inequalities, Oxford University Press, New York, 1986.
  2. J. Beck and W. W. L. Chen, Irregularities of Distribution, Cambridge University Press, 1987.
  3. T. Cochrane, Trigonometric approximation and uniform distribution modulo 1, Proc. Amer. Math. Soc. 103 (1988), 695-702.
  4. P. Erdős and P. Turán, On a problem in the theory of uniform distribution, I, Indag. Math. 10 (1948), 370-378.
  5. P. J. Grabner, Erdős-Turán type discrepancy bounds, Monatsh. Math. 111 (1991), 127-135.
  6. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press, Oxford, 1979.
  7. J. J. Holt and J. D. Vaaler, The Beurling-Selberg extremal functions for a ball in Euclidean space, to appear.
  8. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.
  9. W. M. Schmidt, Irregularities of distribution, IV, Invent. Math. 7 (1969), 55-82.
  10. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, N.J., 1971.
  11. P. Szüsz, Über ein Problem der Gleichverteilung, in: Comptes Rendus du Premier Congrès des Mathématiciens Hongrois, 1950, 461-472.
  12. J. D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985), 183-216.
  13. J. D. Vaaler, Refinements of the Erdős-Turán inequality, in: Number Theory with an Emphasis on the Markoff Spectrum, W. Moran and A. Pollington (eds.), Marcel Dekker, New York, 1993, 263-269
Pages:
61-66
Main language of publication
English
Received
1994-11-02
Published
1996
Exact and natural sciences