ArticleOriginal scientific text
Title
On a form of the Erdős-Turán inequality
Authors 1
Affiliations
- Department of Mathematics, Michigan Technological University, Houghton, Michigan 49931, U.S.A.
Bibliography
- R. C. Baker, Diophantine Inequalities, Oxford University Press, New York, 1986.
- J. Beck and W. W. L. Chen, Irregularities of Distribution, Cambridge University Press, 1987.
- T. Cochrane, Trigonometric approximation and uniform distribution modulo 1, Proc. Amer. Math. Soc. 103 (1988), 695-702.
- P. Erdős and P. Turán, On a problem in the theory of uniform distribution, I, Indag. Math. 10 (1948), 370-378.
- P. J. Grabner, Erdős-Turán type discrepancy bounds, Monatsh. Math. 111 (1991), 127-135.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press, Oxford, 1979.
- J. J. Holt and J. D. Vaaler, The Beurling-Selberg extremal functions for a ball in Euclidean space, to appear.
- L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.
- W. M. Schmidt, Irregularities of distribution, IV, Invent. Math. 7 (1969), 55-82.
- E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, N.J., 1971.
- P. Szüsz, Über ein Problem der Gleichverteilung, in: Comptes Rendus du Premier Congrès des Mathématiciens Hongrois, 1950, 461-472.
- J. D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985), 183-216.
- J. D. Vaaler, Refinements of the Erdős-Turán inequality, in: Number Theory with an Emphasis on the Markoff Spectrum, W. Moran and A. Pollington (eds.), Marcel Dekker, New York, 1993, 263-269