ArticleOriginal scientific text
Title
Limitation to the asymptotic formula in Waring's problem
Authors 1, 2
Affiliations
- Department of Mathematics, Imperial College, Huxley Building, 180 Queen's Gate London SW7 2BZ, U.K.
- Department of Applied Mathematics, Hong Kong Polytechnics University, Hung Hom, Hong Kong
Bibliography
- K. D. Boklan, The asymptotic formula in Waring's Problem, Mathematika 41 (1994), 329-347.
- G. H. Hardy, On the representation of a number as the sum of any number of squares, and in particular of five, Trans. Amer. Math. Soc. 21 (1920), 255-284.
- G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio Numerorum', IV, Math. Z. 12 (1922), 161-188.
- D. R. Heath-Brown, Weyl's inequality, Hua's inequality, and Waring's problem, J. London Math. Soc. 38 (1988), 216-230.
- L. K. Hua, On Waring's problem, Quart. J. Math. Oxford 9 (1938), 199-202.
- L. K. Hua, An improvement of Vinogradov's mean-value theorem and several applications, Quart. J. Math. Oxford 20 (1949), 48-61.
- H. L. Montgomery and R. C. Vaughan, Error terms in additive prime number theory, Quart. J. Math. Oxford 24 (1973), 207-216.
- R. C. Vaughan, On the addition of sequences of integers, J. Number Theory 4 (1972), 1-16.
- R. C. Vaughan, The Hardy-Littlewood Method, Cambridge University Press, 1981.
- R. C. Vaughan, On Waring's problem for cubes, J. Reine Angew. Math. 365 (1986), 122-170.
- R. C. Vaughan, On Waring's problem for smaller exponent II, Mathematika 33 (1986), 6-22.
- I. M. Vinogradov, New estimates for Weyl's sum, Dokl. Akad. Nauk SSSR 8 (1935), 195-198.
- T. D. Wooley, On Vinogradov's mean value theorem, Mathematika 39 (1992), 379-399.