ArticleOriginal scientific text
Title
The period lengths of inversive congruential recursions
Authors 1
Affiliations
- Institute of Mathematics, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
Bibliography
- W.-S. Chou, On inversive maximal period polynomials over finite fields, Appl. Algebra Engrg. Comm. Comput. 6 (1995), 245-250.
- W.-S. Chou, The period lengths of inversive pseudorandom vector generators, Finite Fields Appl. 1 (1995), 126-132.
- J. Eichenauer and J. Lehn, A non-linear congruential pseudorandom number generator, Statist. Hefte 27 (1986), 315-326.
- J. Eichenauer, J. Lehn and A. Topuzoğlu, A nonlinear congruential pseudorandom number generator with power of two modulus, Math. Comp. 51 (1988), 757-759.
- J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers: a tutorial, Internat. Statist. Rev. 60 (1992), 167-176.
- J. Eichenauer-Herrmann, Construction of inversive congruential pseudorandom number generators with maximal period length, J. Comput. Appl. Math. 40 (1992), 345-349.
- J. Eichenauer-Herrmann and A. Topuzoğlu, On the period length of congruential pseudorandom number sequences generated by inversions, J. Comput. Appl. Math. 31 (1990), 87-96.
- M. Flahive and H. Niederreiter, On inversive congruential generators for pseudorandom numbers, in: Finite Fields, Coding Theory, and Advances in Communications and Computing, G. L. Mullen and P. J.-S. Shiue (eds.), Marcel Dekker, New York, 1992, 75-80.
- K. Huber, On the period length of generalized inversive pseudorandom generators, Appl. Algebra Engrg. Comm. Comput. 5 (1994), 255-260.
- H. Niederreiter, Finite fields and their applications, in: Contributions to General Algebra, Vol. 7, Vienna, 1990, Teubner, Stuttgart, 1991.
- H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, PA, 1992.
- H. Niederreiter, Pseudorandom vector generation by the inversive method, ACM Trans. Modeling & Computer Simulation 4 (1994), 191-212.