ArticleOriginal scientific text

Title

An explicit version of Faltings' Product Theorem and an improvement of Roth's lemma

Authors 1

Affiliations

  1. Department of Mathematics and Computer Science, University of Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands

Bibliography

  1. G. Faltings, Diophantine approximation on abelian varieties, Ann. of Math. 133 (1991), 549-576.
  2. G. Faltings and G. Wüstholz, Diophantine approximations on projective spaces, Invent. Math. 116 (1994), 109-138.
  3. R. Ferretti, An effective version of Faltings' Product Theorem, Forum Math., to appear.
  4. W. Fulton, Intersection Theory, Band 2, Ergeb. Math. Grenzgeb. (3), Springer, Berlin, 1984.
  5. H. Gillet and C. Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93-174.
  6. P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978.
  7. W. Gubler, Höhentheorie, Math. Ann. 298 (1994), 427-456.
  8. R. Hartshorne, Algebraic Geometry, Springer, Berlin, 1977.
  9. J. de Jong, Ample line bundles and intersection theory, in: Diophantine Approximation and Abelian Varieties, Proc. conf. Soesterberg, Netherlands, 1992, B. Edixhoven and J.-H. Evertse (eds.), Lecture Notes in Math. 1566, Springer, Berlin, 1993, 69-76.
  10. P. Philippon, Sur des hauteurs alternatives, I, Math. Ann. 289 (1991), 255-283.
  11. M. van der Put, The Product theorem, in: Diophantine Approximation and Abelian Varieties, Proc. conf. Soesterberg, Netherlands, 1992, B. Edixhoven and J.-H. Evertse (eds.), Lecture Notes in Math. 1566, Springer, Berlin, 1993, 77-82.
  12. K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20; Corrigendum, Mathematika 2 (1955), 168.
  13. H. P. Schlickewei, An explicit upper bound for the number of solutions of the S-unit equation, J. Reine Angew. Math. 406 (1990), 109-120.
  14. H. P. Schlickewei, The quantitative Subspace Theorem for number fields, Compositio Math. 82 (1992), 245-273.
  15. W. M. Schmidt, Norm form equations, Ann. of Math. 96 (1972), 526-551.
  16. W. M. Schmidt, The subspace theorem in diophantine approximations, Compositio Math. 69 (1989), 121-173.
  17. W. M. Schmidt, The number of solutions of norm form equations, Trans. Amer. Math. Soc. 317 (1990), 197-227.
  18. I. R. Shafarevich, Basic Algebraic Geometry, Springer, Berlin, 1977.
  19. C. Soulé, Géométrie d'Arakelov et théorie des nombres transcendants, in: Journées Arithmétiques de Luminy, 1989, G. Lachaud (ed.), Astérisque 198-199-200 (1991), 355-372.
  20. G. Wüstholz, Multiplicity estimates on group varieties, Ann. of Math. 129 (1989), 471-500.
  21. O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Springer, Berlin, 1960
Pages:
215-248
Main language of publication
English
Received
1994-07-15
Accepted
1995-03-16
Published
1995
Exact and natural sciences