ArticleOriginal scientific text

Title

A construction of low-discrepancy sequences using global function fields

Authors 1, 2

Affiliations

  1. Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
  2. Institut für Informationsverarbeitung, Österreichische Akademie, Der Wissenschaften, Sonnenfelsgasse 19, A-1010 Wien, Austria

Bibliography

  1. H. Faure, Discrépance de suites associées à un système de numération (en dimension s ), Acta Arith. 41 (1982), 337-351.
  2. A. Garcia and H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math., to appear.
  3. G. Larcher and H. Niederreiter, Generalized (t,s)-sequences, Kronecker-type sequences, and diophantine approximations of formal Laurent series, Trans. Amer. Math. Soc. 347 (1995), 2051-2073.
  4. G. Larcher and W. C. Schmid, Multivariate Walsh series, digital nets and quasi-Monte Carlo integration, in: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, H. Niederreiter and P. J.-S. Shiue (eds.), Lecture Notes in Statist., Springer, Berlin, to appear.
  5. G. L. Mullen, A. Mahalanabis, and H. Niederreiter, Tables of (t,m,s)-net and (t,s)-sequence parameters, in: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, H. Niederreiter and P. J.-S. Shiue (eds.), Lecture Notes in Statist., Springer, Berli, to appear.
  6. H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-337.
  7. H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988), 51-70.
  8. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, Penn., 1992.
  9. H. Niederreiter, Pseudorandom numbers and quasirandom points, Z. Angew. Math. Mech. 73 (1993), T648-T652.
  10. H. Niederreiter, Factorization of polynomials and some linear-algebra problems over finite fields, Linear Algebra Appl. 192 (1993), 301-328.
  11. H. Niederreiter and C. P. Xing, Low-discrepancy sequences obtained from algebraic function fields over finite fields, Acta Arith. 72 (1995), 281-298.
  12. H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, preprint, 1995.
  13. J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397-402.
  14. I. M. Sobol', The distribution of points in a cube and the approximate evaluation of integrals, Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), 784-802 (in Russian).
  15. H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
  16. S. Tezuka, Polynomial arithmetic analogue of Halton sequences, ACM Trans. Model. Comput. Simulation 3 (1993), 99-107.
Pages:
87-102
Main language of publication
English
Received
1995-04-07
Published
1995
Exact and natural sciences