PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1995 | 73 | 1 | 67-85
Tytuł artykułu

Ramanujan's class invariants and cubic continued fraction

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Czasopismo
Rocznik
Tom
73
Numer
1
Strony
67-85
Opis fizyczny
Daty
wydano
1995
otrzymano
1995-01-08
poprawiono
1995-02-13
Twórcy
  • Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801, U.S.A.
  • School of Mathematics, Institute For Advanced Study, Princeton, New Jersey 08540, U.S.A.
  • Department of Mathematics, Southwest Missouri State University, Springfield, Missouri 65804, U.S.A.
Bibliografia
  • [1] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer, New York, 1994.
  • [2] B. C. Berndt and H. H. Chan, Some values for the Rogers-Ramanujan continued fraction, Canad. J. Math. 20 (1995).
  • [3] B. C. Berndt, H. H. Chan and L.-C. Zhang, Ramanujan's class invariants, Kronecker's limit formula, and modular equations, to appear.
  • [4] J. M. and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987.
  • [5] G. S. Carr, Formulas and Theorems in Pure Mathematics, 2nd ed., Chelsea, New York, 1970.
  • [6] H. H. Chan, On Ramanujan's cubic continued fraction, Acta Arith., to appear.
  • [7] K. G. Ramanathan, On Ramanujan's continued fraction, Acta Arith. 43 (1984), 209-226.
  • [8] K. G. Ramanathan, On the Rogers-Ramanujan continued fraction, Proc. Indian Acad. Sci. Math. Sci. 93 (1984), 67-77.
  • [9] K. G. Ramanathan, Ramanujan's continued fraction, Indian J. Pure Appl. Math. 16 (1985), 695-724.
  • [10] K. G. Ramanathan, Some applications of Kronecker's limit formula, J. Indian Math. Soc. 52 (1987), 71-89.
  • [11] S. Ramanujan, Modular equations and approximations to π, Quart. J. Math. (Oxford) 45 (1914), 350-372.
  • [12] S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
  • [13] S. Ramanujan, Collected Papers, Chelsea, New York, 1962.
  • [14] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.
  • [15] G. N. Watson, Theorems stated by Ramanujan (IX): two continued fractions, J. London Math. Soc. 4 (1929), 231-237.
  • [16] G. N. Watson, Theorems stated by Ramanujan (XIV): a singular modulus, J. London Math. Soc. 6 (1931), 126-132.
  • [17] G. N. Watson, Some singular moduli (I), Quart. J. Math. 3 (1932), 81-98.
  • [18] G. N. Watson, Some singular moduli (II), Quart. J. Math. 3 (1932), 189-212.
  • [19] G. N. Watson, Singular moduli (3), Proc. London Math. Soc. 40 (1936), 83-142.
  • [20] G. N. Watson, Singular moduli (4), Acta Arith. 1 (1936), 284-323.
  • [21] G. N. Watson, Singular moduli (5), Proc. London Math. Soc. 42 (1937), 377-397.
  • [22] G. N. Watson, Singular moduli (6), Proc. London Math. Soc. 42 (1937), 398-409
  • [23] H. Weber, Lehrbuch der Algebra, dritter Band, Chelsea, New York, 1961.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav73i1p67bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.