ArticleOriginal scientific text

Title

Galois descent and twists of an abelian variety

Authors 1

Affiliations

  1. Department of Mathematical Sciences, Yamagata University, Yamagata, 990 Japan

Bibliography

  1. G. Faltings, Finiteness theorems for abelian varieties over number fields, in: Arithmetic Geometry, G. Cornell and J. H. Silverman (eds.), Springer, 1986, 9-27.
  2. T. Honda, Isogenies, rational points and section points of group varieties, Japan. J. Math. 30 (1960), 84-101.
  3. M. Kida, On the rank of an elliptic curve in elementary 2-extensions, Proc. Japan Acad. 69 (1993), 422-425.
  4. J. S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177-190.
  5. J. S. Milne, Abelian varieties, in: Arithmetic Geometry, G. Cornell and J. H. Silverman (eds.), Springer, 1986, 103-150.
  6. J. Neukirch, Class Field Theory, Springer, 1986.
  7. T. Ono, On the relative Mordell-Weil rank of elliptic quartic curves, J. Math. Soc. Japan 32 (1980), 665-670.
  8. I. Satake, Classification Theory of Semi-simple Algebraic Groups, Marcel Dekker, New York, 1971.
  9. A. Sato, The behavior of Mordell-Weil groups under field extensions, preprint.
  10. J.-P. Serre, Représentations linéaires des groupes finis, deuxième éd., Hermann, Paris, 1971.
  11. A. Weil, Adeles and Algebraic Groups, Birkhäuser, 1982
Pages:
51-57
Main language of publication
English
Received
1994-12-05
Accepted
1995-02-07
Published
1995
Exact and natural sciences