ArticleOriginal scientific text

Title

Ideal class groups of cyclotomic number fields I

Authors 1

Affiliations

  1. Erwin-Rohde-Str. 19, D-69120 Heidelberg, Germany

Bibliography

  1. [F] B. Ferrero, The cyclotomic ℤ₂-extension of imaginary quadratic number fields, Amer. J. Math. 102 (1980), 447-459.
  2. [H] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Springer, Berlin, 1985.
  3. [HY] M. Hirabayashi and K. Yoshino, Remarks on unit indices of imaginary abelian number fields, Manuscripta Math. 60 (1988), 423-436.
  4. [Ho] K. Horie, On a ratio between relative class numbers, Math. Z. 211 (1992), 505-521.
  5. [L] F. Lemmermeyer, Kuroda's class number formula, Acta Arith. 66 (1994), 245-260.
  6. [Lou] S. Louboutin, Determination of all quaternion octic CM-fields with class number 2, J. London Math. Soc., to appear.
  7. [LOO] S. Louboutin, R. Okazaki and M. Olivier, The class number one problem for some non-abelian normal CM-fields, preprint, 1994.
  8. [M] T. Metsänkylä, Über den ersten Faktor der Klassenzahl des Kreiskörpers, Ann. Acad. Sci. Fenn. Ser. A I 416, 1967.
  9. [MM] J. M. Masley and H. L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976), 248-256.
  10. [O] R. Okazaki, On evaluation of L-functions over real quadratic fields, J. Math. Kyoto Univ. 31 (1991), 1125-1153.
  11. [S] A. Scholz, Über die Lösbarkeit der Gleichung t² - Du² = -4, Math. Z. 39 (1934), 95-111.
  12. [U] K. Uchida, Imaginary quadratic number fields with class number one, Tôhoku Math. J. 24 (1972), 487-499.
  13. [W] L. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982.
  14. [We] J. Westlund, On the class number of the cyclotomic number field, Trans. Amer. Math. Soc. 4 (1903), 201-212.
Pages:
347-359
Main language of publication
English
Received
1994-08-19
Published
1995
Exact and natural sciences