ArticleOriginal scientific text
Title
A sieve approach to the Waring-Goldbach problem, II On the seven cubes theorem
Authors 1
Affiliations
- Mathematisches Institut, A Pfaffenwaldring 57, 70551 Stuttgart, Germany
Bibliography
- J. Brüdern, On Waring's problem for fifth powers and some related topics, Proc. London Math. Soc. (3) 61 (1990), 457-479.
- J. Brüdern, Sieves, the circle method, and Waring's problem for cubes, Habilitationsschrift, Göttingen 1991; Mathematica Gottingensis 51 (1991).
- J. Brüdern, A note on cubic exponential sums, in: Séminaire de Théorie des Nombres, Paris 1990-91, S. David (ed.), Progr. Math. 108, Birkhäuser, Basel, 1992, 23-34.
- J. Brüdern, A sieve approach to the Waring-Goldbach problem I: Sums of four cubes, Ann. Sci. École Norm. Sup. Paris, to appear.
- J. Brüdern and E. Fouvry, Lagrange's four squares theorem with almost prime variables, J. Reine Angew. Math. 454 (1994), 59-96.
- G. Greaves, A weighted sieve of Brun's type, Acta Arith. 40 (1981), 297-332.
- L. K. Hua, Some results in additive prime number theory, Quart. J. Math. Oxford 9 (1938), 68-80.
- L. K. Hua, Additive Theory of Prime Numbers, Providence, R. I., 1965.
- R. C. Vaughan, The Hardy-Littlewood Method, Cambridge University Press, 1981.
- R. C. Vaughan, Some remarks on Weyl sums, in: Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam, 1984.
- R. C. Vaughan, On Waring's problem for cubes, J. Reine Angew. Math. 365 (1986), 121-170.
- R. C. Vaughan, On Waring's problem for cubes II, J. London Math. Soc. (2) 39 (1989), 205-218.
- R. C. Vaughan, A new iterative method in Waring's problem, Acta Math. 162 (1989), 1-71.
- G. L. Watson, A proof of the seven cubes theorem, J. London Math. Soc. 26 (1951), 153-156.
- T. D. Wooley, Large improvements in Waring's problem, Ann. of Math. 135 (1992), 131-146