ArticleOriginal scientific text

Title

A sieve approach to the Waring-Goldbach problem, II On the seven cubes theorem

Authors 1

Affiliations

  1. Mathematisches Institut, A Pfaffenwaldring 57, 70551 Stuttgart, Germany

Bibliography

  1. J. Brüdern, On Waring's problem for fifth powers and some related topics, Proc. London Math. Soc. (3) 61 (1990), 457-479.
  2. J. Brüdern, Sieves, the circle method, and Waring's problem for cubes, Habilitationsschrift, Göttingen 1991; Mathematica Gottingensis 51 (1991).
  3. J. Brüdern, A note on cubic exponential sums, in: Séminaire de Théorie des Nombres, Paris 1990-91, S. David (ed.), Progr. Math. 108, Birkhäuser, Basel, 1992, 23-34.
  4. J. Brüdern, A sieve approach to the Waring-Goldbach problem I: Sums of four cubes, Ann. Sci. École Norm. Sup. Paris, to appear.
  5. J. Brüdern and E. Fouvry, Lagrange's four squares theorem with almost prime variables, J. Reine Angew. Math. 454 (1994), 59-96.
  6. G. Greaves, A weighted sieve of Brun's type, Acta Arith. 40 (1981), 297-332.
  7. L. K. Hua, Some results in additive prime number theory, Quart. J. Math. Oxford 9 (1938), 68-80.
  8. L. K. Hua, Additive Theory of Prime Numbers, Providence, R. I., 1965.
  9. R. C. Vaughan, The Hardy-Littlewood Method, Cambridge University Press, 1981.
  10. R. C. Vaughan, Some remarks on Weyl sums, in: Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam, 1984.
  11. R. C. Vaughan, On Waring's problem for cubes, J. Reine Angew. Math. 365 (1986), 121-170.
  12. R. C. Vaughan, On Waring's problem for cubes II, J. London Math. Soc. (2) 39 (1989), 205-218.
  13. R. C. Vaughan, A new iterative method in Waring's problem, Acta Math. 162 (1989), 1-71.
  14. G. L. Watson, A proof of the seven cubes theorem, J. London Math. Soc. 26 (1951), 153-156.
  15. T. D. Wooley, Large improvements in Waring's problem, Ann. of Math. 135 (1992), 131-146
Pages:
211-227
Main language of publication
English
Received
1994-10-05
Published
1995
Exact and natural sciences