ArticleOriginal scientific text

Title

On the converse of Wolstenholme's Theorem

Authors 1

Affiliations

  1. Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2

Bibliography

  1. H. W. Brinkmann, Problem E.435, Amer. Math. Monthly 48 (1941), 269-271.
  2. V. Brun, J. Stubban, J. Fjeldstad, R. Lyche, K. Aubert, W. Ljunggren and E. Jacobsthal, On the divisibility of the difference between two binomial coefficients, in: Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, 42-54.
  3. J. Buhler, R. Crandall, R. Ernvall and T. Metsänkylä, Irregular primes and cyclotomic invariants to four million, Math. Comp. 61 (1993), 151-153.
  4. M. D. Davis, Hilbert's tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233-269.
  5. L. E. Dickson, The History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1966.
  6. H. M. Edwards, Fermat's Last Theorem, Springer, New York, 1977.
  7. J. W. L. Glaisher, Congruences relating to the sums of products of the first n numbers and to other sums of products, Quart. J. Math. 31 (1900), 1-35.
  8. J. W. L. Glaisher, On the residues of the sums of products of the first p-1 numbers, and their powers, to modulus p² or p³, Quart. J. Math., 321-353.
  9. R. K. Guy, Unsolved Problems in Number Theory, Springer, New York, 1981.
  10. W. Johnson, Irregular primes and cyclotomic invariants, Math. Comp. 29 (1975), 113-120.
  11. W. Johnson, p-adic proofs of congruences for the Bernoulli numbers, J. Number Theory 7 (1975), 251-265.
  12. J. P. Jones, Private correspondence, January 1994.
  13. J. P. Jones and Yu. V. Matijasevič, Proof of recursive unsolvability of Hilbert's tenth problem, Amer. Math. Monthly 98 (1991), 689-709.
  14. E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
  15. E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. 39 (1938), 350-360.
  16. E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1878), 49-54.
  17. Yu. V. Matijasevič, Enumerable sets are diophantine, Dokl. Akad. Nauk SSSR 191 (1970), 279-282 (in Russian); English transl. with addendum: Soviet Math. Dokl. 11 (1970), 354-357. MR 41, #3390.
  18. Yu. V. Matijasevič, Primes are non-negative values of a polynomial in 10 variables, Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Akad. Nauk SSSR 68 (1977), 62-82 (in Russian); English transl.: J. Soviet Math. 15 (1981), 33-44.
  19. Yu. V. Matijasevič and J. Robinson, Reduction of an arbitrary diophantine equation to one in 13 unknowns, Acta Arith. 27 (1975), 521-553.
  20. R. J. McIntosh, A generalization of a congruential property of Lucas, Amer. Math. Monthly 99 (1992), 231-238.
  21. R. J. McIntosh, Congruences identifying the primes, Crux Mathematicorum 20 (1994), 33-35.
  22. P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, New York, 1979.
  23. P. Ribenboim, The Book of Prime Number Records, 2nd ed., Springer, New York, 1989.
  24. E. T. Stafford and H. S. Vandiver, Determination of some properly irregular cyclotomic fields, Proc. Nat. Acad. Sci. U.S.A. 16 (1930), 139-150.
  25. J. W. Tanner and S. S. Wagstaff, Jr., New congruences for the Bernoulli numbers, Math. Comp. 48 (1987), 341-350.
Pages:
381-389
Main language of publication
English
Received
1994-03-21
Accepted
1994-12-02
Published
1995
Exact and natural sciences