ArticleOriginal scientific text
Title
Congruences among generalized Bernoulli numbers
Authors 1, 2, 3
Affiliations
- Institute of Mathematics, Military Academy of Technology, ul. Kaliskiego 2, 01-489 Warszawa, Poland
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland
- Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, D-53225 Bonn, Germany
Bibliography
- B. C. Berndt, Character analogues of the Poisson and Euler-Maclaurin summation formula with applications, J. Number Theory 7 (1975), 413-445.
- B. C. Berndt, Classical theorems on quadratic residues, Enseign. Math. 22 (1976), 261-304.
- L. Carlitz, Arithmetic properties of generalized Bernoulli numbers, J. Reine Angew. Math. 202 (1959), 174-182.
- G. Gras, Relations congruentielles linéaires entre nombres de classes de corps quadratiques, Acta Arith. 52 (1989), 147-162.
- K. Hardy and K. S. Williams, A congruence relating to class numbers of complex quadratic fields, Acta Arith. 47 (1986), 263-276.
- H. W. Leopoldt, Eine Verallgemeinerung der Bernoullischen Zahlen, Abh. Math. Sem. Univ. Hamburg 22 (1958), 131-140.
- M. Lerch, Essai sur le calcul du nombre de classes de formes quadratiques binaires aux coefficients entiers, Acta Math. 29 (1905), 333-424.
- J. Szmidt and J. Urbanowicz, Some new congruences for generalized Bernoulli numbers of higher orders, preprint FI94-LF05 of the Fields Institute for Research in Math. Sciences.
- T. Uehara, On linear congruences between class numbers of quadratic fields, J. Number Theory 34 (1990), 362-392.
- J. Urbanowicz, Connections between B₂,χ for even quadratic Dirichlet characters χ and class numbers of appropriate imaginary quadratic fields I, Compositio Math. 75 (1990), 247-270, Corrigendum: Compositio Math. 77 (1991), 119-123.
- J. Urbanowicz, Connections between B₂,χ for even quadratic Dirichlet characters χ and class numbers of appropriate imaginary quadratic fields II, Compositio Math. 75 (1990), 271-285, Corrigendum: Compositio Math. 77 (1991), 123-125.
- J. Urbanowicz, On some new congruences for generalized Bernoulli numbers, I and II, Publ. Math. Fac. Sci. Besançon, Théorie des Nombres, Années 1990/91.