ArticleOriginal scientific text
Title
On the set of numbers {14, 22, 30, 42, 90}
Authors 1
Affiliations
- Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts 02115, U.S.A.
Bibliography
- A. Baker and H. Davenport, The equations 3x²-2=y² and 8x²-7=z², Quart. J. Math. 20 (1969), 129-137.
- G. Berzsenyi, Adventures among Pₜ-sets, Quantum 1 (1991), 57.
- E. Brown, Sets in which xy+k is always a square, Math. Comp. 45 (1985), 613-620.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Carnegie Institution, Washington, 1920; reprinted, Chelsea, New York, 1966.
- C. M. Grinstead, On a method of solving a class of diophantine equations, Math. Comp. 32 (1978), 936-940.
- P. Kanagasabapathy and T. Ponnudurai, The simultaneous diophantine equations y²-3x²=-2 and z²-8x²=-7, Quart. J. Math. 26 (1975), 275-278.
- V. Mootha and G. Berzsenyi, Characterizations and extendibility of Pₜ-sets, Fibonacci Quart. 27 (1989), 287-288.
- T. Nagell, Introduction to Number Theory, Wiley, New York, 1951.
- G. Sansone, Il sistema diofanteo N+1=x², 3N+1=y², 8N+1=z², Ann. Mat. Pura Appl. 111 (1976), 125-151.