ArticleOriginal scientific text

Title

Groups of cubefree order

Authors 1

Affiliations

  1. Mathematics/Science Division, Babson College, Babson Park, Massachusetts 02157, U.S.A.

Bibliography

  1. J.-R. Chen and J.-M. Liu, On the least prime in an arithmetical progression (III), (IV), Science in China Ser. A 32 (1989), 654-673, 782-809.
  2. P. Erdős, Some asymptotic formulas in number theory, J. Indian Math. Soc. 12 (1948), 75-78.
  3. P. Erdős, M. R. Murty and V. K. Murty, On the enumeration of finite groups, J. Number Theory 25 (1987), 360-378.
  4. D. Gorenstein, Finite Groups, Series in Modern Mathematics, Harper and Row, New York, 1968, xv+527.
  5. M. Hall, The Theory of Groups, Twelfth Printing, The Macmillan Company, New York, 1973, xiv+434.
  6. D. R. Heath-Brown, Zero-free regions for Dirichlet's L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. 64 (1992), 265-338.
  7. Yu. V. Linnik, On the least prime in an arithmetic progression. II. The Deuring-Heilbronn Phenomenon, Rec. Math. [Math. Sbornik] N.S. 15 (57) (1994), 345-368.
  8. M.-G. Lu, The asymptotic formula for F₂(x), Sci. Sinica Ser. A 30 (1987), 262-278.
  9. M. R. Murty and V. K. Murty, On the number of groups of a given order, J. Number Theory 18 (1984), 178-191.
  10. C. A. Spiro, The probability that the number of groups of squarefree order is two more than a fixed prime, Proc. London Math. Soc. 60 (1990), 444-470.
  11. C. A. Spiro-Silverman, When the group-counting function assumes a prescribed integer value at squarefree integers frequently, but not extremely frequently, Acta Arith. 61 (1992), 1-12.
Pages:
209-227
Main language of publication
English
Received
1994-02-18
Accepted
1994-09-06
Published
1995
Exact and natural sciences