ArticleOriginal scientific text

Title

Primitive elements in integral bases

Authors 1

Affiliations

  1. Vakgroep Wiskunde, Econometrisch Instituut, Erasmus Universiteit Rotterdam, Postbus 1738, 3000 DR Rotterdam, The Netherlands

Bibliography

  1. S. Böge, Die ε-invariante von SL(2,p), Arch. Math. (Basel) 46 (1986), 299-303.
  2. D. Burns, Factorisability, group lattices, and Galois module structure, J. Algebra 134 (1990), 257-270.
  3. J. W. S. Cassels and A. Fröhlich (eds.), Algebraic Number Theory, Academic Press, London, 1967.
  4. B. de Smit, Class group relations and Galois module structure, dissertation, University of California at Berkeley, 1993.
  5. A. Fajardo Mirón, The calculation of algebraic integers β with small index [A:ℤ[β]] using the basis reduction algorithm LLL, doctoraal scriptie (MA thesis), Universiteit van Amsterdam, 1987.
  6. A. Fröhlich, Galois Module Structure of Algebraic Integers, Ergeb. Math. Grenzgeb. (3) 1, Springer, 1983.
  7. A. Fröhlich, L-values at zero and multiplicative Galois module structure (also Galois Gauss sums and additive Galois module structure), J. Reine Angew. Math. 397 (1989), 42-99.
  8. J. S. Hsia and R. D. Peterson, An invariant ideal of a group ring of a finite group and applications, J. Algebra 32 (1974), 576-599.
  9. J. S. Hsia and R. D. Peterson, An invariant ideal of a group ring of a finite group II, Proc. Amer. Math. Soc. 51 (1975), 275-281.
  10. S. Lang, Algebraic Number Theory, Graduate Texts in Math. 110, Springer, New York, 1986.
  11. W. Scharlau, Eine Invariante endlicher Gruppen, Math. Z. 130 (1973), 291-296.
  12. S. Sen, On automorphisms of local fields, Ann. of Math. (2) 90 (1969), 33-46.
Pages:
159-170
Main language of publication
English
Received
1994-06-14
Accepted
1994-09-14
Published
1995
Exact and natural sciences