ArticleOriginal scientific text

Title

Remarks on systems of congruence classes

Authors 1, 2

Affiliations

  1. Department of Mathematics, Nanjing Normal University, Nanjing 210024, Jiangsu Province, People Republic of China
  2. Department of Mathematics, Institute of Chemical Technology, Technická 1905, 166 28 Prague 6, Czech Republic

Bibliography

  1. M. A. Berger, A. Felzenbaum and A. S. Fraenkel, Improvements to the Newman-Znám result for disjoint covering systems, Acta Arith. 50 (1988), 1-13.
  2. M. A. Berger, A. Felzenbaum and A. S. Fraenkel, Disjoint covering systems with precisely one multiple modulus, Acta Arith. 50 (1988), 171-182.
  3. P. Erdős, Számleméleti megjegyzések IV, Mat. Lapok 13 (1962), 228-255.
  4. M. Newman, Roots of unity and covering sets, Math. Ann. 191 (1971), 279-282.
  5. Š. Porubský, Generalization of some results for exactly covering systems, Mat. Časopis Sloven. Akad. Vied. 22 (1972), 208-214.
  6. Š. Porubský, Covering systems and generating functions, Acta Arith. 26 (1975), 223-231.
  7. Š. Porubský, Natural exactly covering systems of congruences, Czechoslovak Math. J. 24 (99) (1974), 598-606.
  8. Š. Porubský, On m times covering systems of congruences, Acta Arith. 29 (1976), 159-169.
  9. S. K. Stein, Unions of arithmetic sequences, Math. Ann. 134 (1958), 289-294.
  10. Z.-W. Sun, An improvement of Znám-Newman's result, Chinese Quart. J. Math. 6 (1991), 90-96.
  11. Š. Znám, On exactly covering systems of arithmetic sequences, in: Number Theory, Colloq. Math. Soc. János Bolyai, Debrecen 1968, North-Holland, Amsterdam, 1970, 221-225.
  12. Š. Znám, On exactly covering systems of arithmetic sequences, Math. Ann. 180 (1969), 227-232.
  13. Š. Znám, Vector-covering systems of arithmetical sequences, Czechoslovak Math. J. 24 (99) (1974), 455-461.
Pages:
1-10
Main language of publication
English
Received
1993-10-26
Accepted
1994-08-05
Published
1995
Exact and natural sciences