ArticleOriginal scientific text
Title
The spectral mean value for linear forms in twisted coefficients of cusp forms
Authors 1
Affiliations
- Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, California 94720, U.S.A.
Bibliography
- J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982), 219-288.
- J.-M. Deshouillers and H. Iwaniec, The non-vanishing of Rankin-Selberg zeta-functions at special points, in: The Selberg Trace Formula and Related Topics, Contemp. Math. 53, Amer. Math. Soc., Providence, R.I., 1986, 59-95.
- I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, New York and London, 1965.
- D. A. Hejhal, The Selberg Trace Formula for PSL(2,R), Vol. 2, Lecture Notes in Math. 1001, Springer, 1983.
- M. N. Huxley, The large sieve inequality for algebraic number fields. II: Means of moments of Hecke zeta-functions, Proc. London Math. Soc. (3) 21 (1970), 108-128.
- H. Iwaniec, Fourier coefficients of cusp forms and the Riemann zeta-function, Séminaire de Théorie des Nombres, Bordeaux 1979-80.
- M. Jutila, On spectral large sieve inequalities, preprint, 1991.
- N. V. Kuznetsov, Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums, Mat. Sb. 111 (1980), 334-383 (in Russian).
- W. Luo, On the non-vanishing of Rankin-Selberg L-functions, Duke Math. J. 69 (1993), 411-425.
- H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, 1971.
- R. Phillips and P. Sarnak, On cusp forms for cofinite subgroups of PSL(2,R), Invent. Math. 80 (1985), 339-364.
- R. A. Rankin, Contributions to the theory of Ramanujan's function τ(n) and similar arithmetic functions, Proc. Cambridge Philos. Soc. 35 (1939), 357-372.
- A. Selberg, On the estimation of Fourier coefficients of modular forms, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, R.I., 1965, 1-15.
- A. Selberg, Collected Papers, Vol. 1, Springer, 1989, 626-674.
- G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971.
- E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, 1951.
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge, 1944.