ArticleOriginal scientific text

Title

The spectral mean value for linear forms in twisted coefficients of cusp forms

Authors 1

Affiliations

  1. Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, California 94720, U.S.A.

Bibliography

  1. J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982), 219-288.
  2. J.-M. Deshouillers and H. Iwaniec, The non-vanishing of Rankin-Selberg zeta-functions at special points, in: The Selberg Trace Formula and Related Topics, Contemp. Math. 53, Amer. Math. Soc., Providence, R.I., 1986, 59-95.
  3. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, New York and London, 1965.
  4. D. A. Hejhal, The Selberg Trace Formula for PSL(2,R), Vol. 2, Lecture Notes in Math. 1001, Springer, 1983.
  5. M. N. Huxley, The large sieve inequality for algebraic number fields. II: Means of moments of Hecke zeta-functions, Proc. London Math. Soc. (3) 21 (1970), 108-128.
  6. H. Iwaniec, Fourier coefficients of cusp forms and the Riemann zeta-function, Séminaire de Théorie des Nombres, Bordeaux 1979-80.
  7. M. Jutila, On spectral large sieve inequalities, preprint, 1991.
  8. N. V. Kuznetsov, Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums, Mat. Sb. 111 (1980), 334-383 (in Russian).
  9. W. Luo, On the non-vanishing of Rankin-Selberg L-functions, Duke Math. J. 69 (1993), 411-425.
  10. H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, 1971.
  11. R. Phillips and P. Sarnak, On cusp forms for cofinite subgroups of PSL(2,R), Invent. Math. 80 (1985), 339-364.
  12. R. A. Rankin, Contributions to the theory of Ramanujan's function τ(n) and similar arithmetic functions, Proc. Cambridge Philos. Soc. 35 (1939), 357-372.
  13. A. Selberg, On the estimation of Fourier coefficients of modular forms, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, R.I., 1965, 1-15.
  14. A. Selberg, Collected Papers, Vol. 1, Springer, 1989, 626-674.
  15. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971.
  16. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, 1951.
  17. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge, 1944.
Pages:
377-391
Main language of publication
English
Received
1993-02-17
Accepted
1994-04-25
Published
1995
Exact and natural sciences