ArticleOriginal scientific text

Title

Northcott's theorem on heights II. The quadratic case

Authors 1

Affiliations

  1. Department of Mathematics, University of Colorado, Boulder, Colorado 80309-0395, U.S.A.

Bibliography

  1. T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976.
  2. J. W. S. Cassels, An Introduction to the Geometry of Numbers, Grundlehren Math. Wiss. 99, Springer, 1959.
  3. H. Davenport, On a principle of Lipschitz, J. London Math. Soc. 26 (1951), 179-183.
  4. D. Goldfeld and J. Hoffstein, Eisenstein series of 1/2-integral weight and the mean value of real Dirichlet L-series, Invent. Math. 80 (1985), 185-208.
  5. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Clarendon Press, Oxford, 1954.
  6. E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Chelsea, 1948.
  7. Y. R. Katznelson, Asymptotics for singular integral matrices in convex domains and applications, Ph.D. Dissertation, Stanford Univ., 1991.
  8. S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983.
  9. R. Lipschitz, Sitzungsber. Akad. Berlin, 1865, 174-185.
  10. D. G. Northcott, An inequality in the theory of arithmetic on algebraic varieties, Proc. Cambridge Philos. Soc. 45 (1949), 502-509 and 510-518.
  11. S. H. Schanuel, Heights in number fields, Bull. Soc. Math. France 107 (1979), 433-449.
  12. W. M. Schmidt, Diophantine Approximations and Diophantine Equations, Lecture Notes in Math. 1467, Springer, 1991.
  13. W. M. Schmidt, Northcott's theorem on heights, I. A general estimate, Monatsh. Math. 115 (1993), 169-181.
  14. J.-P. Serre, Lectures on the Mordell-Weil Theorem, Vieweg, Braunschweig, 1988.
  15. C. L. Siegel, The average measure of quadratic forms with given determinant and signature, Ann. of Math. 45 (1944), 667-685.
  16. C. L. Siegel, Abschätzung von Einheiten, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. 1969, 71-86.
  17. C. L. Siegel, Lectures on the Geometry of Numbers, rewritten by K. Chandrasekharan, Springer, 1988.
  18. J. Silverman, Lower bounds for height functions, Duke Math. J. 51 (1984), 395-403.
Pages:
343-375
Main language of publication
English
Received
1992-08-04
Published
1995
Exact and natural sciences