PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1995 | 70 | 4 | 295-312
Tytuł artykułu

On arithmetic progressions having only few different prime factors in comparison with their length

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Czasopismo
Rocznik
Tom
70
Numer
4
Strony
295-312
Opis fizyczny
Daty
wydano
1995
otrzymano
1991-10-08
poprawiono
1994-11-07
Twórcy
autor
  • Department of Mathematics, Princeton University, Fine Hall - Washington Road, Princeton, New Jersey 08544-1000, U.S.A.
Bibliografia
  • [E] P. Erdős, Über die Primzahlen gewisser arithmetischer Reihen, Math. Z. 39 (1934), 473-491.
  • [G] A. Granville, Integers, without large prime factors, in arithmetic progressions, I, Acta Math. 170 (1993), 255-273.
  • [Mc1] K. S. McCurley, Explicit estimates for θ(x;3,1) and ψ(x;3,1), Math. Comp. 42 (1984), 287-296.
  • [Mc2] K. S. McCurley, Explicit estimates for the error term in the prime number theorem for arithmetic progressions, Math. Comp., 265-285.
  • [Mo1] P. Moree, Bertrand's Postulate for primes in arithmetical progressions, Comput. Math. Appl. 26 (1993), 35-43.
  • [Mo2] P. Moree, Psixyology and diophantine equations, Ph.D. thesis, Leiden University, 1993.
  • [RRu] O. Ramaré and R. Rumely, Primes in arithmetic progressions, Math. Comp., to appear.
  • [Ri] P. Ribenboim, The Book of Prime Number Records, Springer, New York, 1989 (2nd ed., 1990).
  • [RS1] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
  • [RS2] J. B. Rosser and L. Schoenfeld, Sharper bounds for Chebyshev functions θ(x) and ψ(x), Math. Comp. 29 (1975), 243-269.
  • [Ru] R. Rumely, Numerical computations concerning the ERH, Math. Comp. 62 (1993), 415-440.
  • [ST1] T. N. Shorey and R. Tijdeman, On the number of prime factors of an arithmetical progression, Sichuan Daxue Xuebao 26 (1989), 72-74.
  • [ST2] T. N. Shorey and R. Tijdeman, On the number of prime factors of a finite arithmetical progression, Acta Arith. 61 (1992), 375-390.
  • [ST3] T. N. Shorey and R. Tijdeman, On the product of terms of a finite arithmetic progression, in: Proc. Conf. Diophantine Approximations and Transcendence Theory, Y.-N. Nakai (ed.), RIMS Kokyuroku 708, Kyoto, 1990, 51-62.
  • [ST4] T. N. Shorey and R. Tijdeman, On the greatest prime factor of an arithmetical progression III, in: Proc. Conf. Luminy Transcendence Theory, 1990, Ph. Philippon (ed.), de Gruyter, Berlin, 1992.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav70i4p295bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.