ArticleOriginal scientific text
Title
Integers with no large prime factors
Authors 1
Affiliations
- Department of Mathematics, Beijing Normal University, Beijing 100875, People's Republic of China
Bibliography
- N. G. de Bruijn, On the number of positive integers ≤x and free of prime factors >y, Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951), 50-60.
- N. G. de Bruijn, The asymptotic behavior of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.) 15 (1951), 25-32.
- H. G. Diamond and H. Halberstam, The combinatorial sieve, in: Number Theory, Proc. 4th Matsci. Conf. Ootacamund/India 1984, Lecture Notes in Math. 1122, Springer, 1985, 63-73
- E. Fouvry et G. Tenenbaum, Entiers sans grand facteur premier en progressions arithmétiques, Proc. London Math. Soc. (3) 63 (1991), 449-494.
- H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
- D. G. Hazlewood, Sums over positive integers with few prime factors, J. Number Theory 7 (1975), 189-207.
- A. Hildebrand, On the number of positive integers ≤x and free of prime factors >y, J. Number Theory 22 (1986), 289-307.
- A. Hildebrand and G. Tenenbaum, On integers free of large prime factors, Trans. Amer. Math. Soc. 296 (1986), 265-290.
- K. K. Norton, Numbers with small prime factors and the least k-th power non residue, Mem. Amer. Math. Soc. 106 (1971).
- H. E. Richert, Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen σ = 1, Math. Ann. 169 (1967), 97-101.
- E. Saias, Sur le nombre des entiers sans grand facteur premier, J. Number Theory 32 (1989), 78-99.
- G. Tenenbaum, Cribler les entiers sans grand facteur premier, Philos. Trans. Roy. Soc. London Ser. A 345 (1993), 377-384.
- E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed. revised by D. R. Heath-Brown, Oxford, 1986.
- A. I. Vinogradov, On numbers with small prime divisors, Dokl. Akad. Nauk SSSR (N.S.) 109 (1956), 683-686 (in Russian).