ArticleOriginal scientific text
Title
Independence of solution sets and minimal asymptotic bases
Authors 1, 2, 3
Affiliations
- Mathematical Institute, Hungarian Academy of Sciences, Reáltanoda u. 13-15, H-1053 Budapest, Hungary
- Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468, U.S.A.
- AT&T Bell Laboratories, Murray Hill, New Jersey 07974, U.S.A.
Bibliography
- P. Erdős and M. B. Nathanson, Oscillations of bases for the natural numbers, Proc. Amer. Math. Soc. 53 (1975), 253-258.
- P. Erdős and M. B. Nathanson, Independence of solution sets in additive number theory, in: Probability, Statistical Mechanics, and Number Theory, G.-C. Rota (ed.), Adv. Math. Suppl. Stud. 9 (1986), 97-105.
- P. Erdős and M. B. Nathanson, Systems of distinct representatives and minimal bases in additive number theory, in: Number Theory, Carbondale 1979, M. B. Nathanson (ed.), Lecture Notes in Math. 751, Springer, Heidelberg, 1979, 89-107.
- P. Erdős and M. B. Nathanson, Problems and results on minimal bases in additive number theory, in: Number Theory, New York 1985-86, D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn, and M. B. Nathanson (eds.), Lecture Notes in Math. 1240, Springer, Heidelberg, 1987, 87-96.
- P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90.
- P. Erdős and A. Rényi, Additive properties of random sequences of positive integers, Acta Arith. 6 (1960), 83-110.
- P. Erdős and P. Tetali, Representations of integers as the sum of k terms, Random Structures and Algorithms 1 (1990), 245-261.
- H. Halberstam and K. F. Roth, Sequences, Springer, Heidelberg, 1983.
- X.-D. Jia, Simultaneous systems of representatives for finite families of finite sets, Proc. Amer. Math. Soc. 104 (1988), 33-36.
- M. B. Nathanson, Simultaneous systems of representatives for families of finite sets, Proc. Amer. Math. Soc. 103 (1988), 1322-1326.