ArticleOriginal scientific text

Title

Cyclotomic numbers of order 2l, l an odd prime

Authors 1, 2

Affiliations

  1. Department of Mathematics, Fergusson College, Pune-411004, India
  2. Department of Mathematics, University of Poona, Pune-411007, India

Bibliography

  1. B. C. Berndt and R. J. Evans, Sums of Gauss, Eisenstein, Jacobi, Jacobsthal and Brewer, Illinois J. Math. 23 (1979), 374-437.
  2. N. Buck and K. S. Williams, Sequel to Muskat's evaluation of the cyclotomic numbers of order fourteen, Carleton Mathematical Series 216, November 1985, Carleton University, Ottawa, 22 pp.
  3. L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math. 57 (1935), 391-424.
  4. L. E. Dickson, Cyclotomy and trinomial congruences, Trans. Amer. Math. Soc. 37 (1935), 363-380.
  5. M. Hall, Cyclotomy and characters, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 31-43.
  6. S. A. Katre and A. R. Rajwade, Complete solution of the cyclotomic problem in q for any prime modulus l, q=pα, p≡ 1 (mod l), Acta Arith. 45 (1985), 183-199.
  7. S. A. Katre and A. R. Rajwade, Resolution of the sign ambiguity in the determination of the cyclotomic numbers of order 4 and the corresponding Jacobsthal sum, Math. Scand. 60 (1987), 52-62.
  8. J. B. Muskat, The cyclotomic numbers of order fourteen, Acta Arith. 11 (1966), 263-279.
  9. J. C. Parnami, M. K. Agrawal and A. R. Rajwade, Jacobi sums and cyclotomic numbers for a finite field, Acta Arith. 41 (1982), 1-13.
  10. T. Storer, On the unique determination of the cyclotomic numbers for Galois fields and Galois domains, J. Combin. Theory 2 (1967), 296-300.
  11. A. L. Whiteman, Cyclotomic numbers of order 10, in: Proc. Sympos. Appl. Math. 10, Amer. Math. Soc., 1960, 95-111.
  12. Y. C. Zee, Jacobi sums of order 22, Proc. Amer. Math. Soc. 28 (1971), 25-31
Pages:
51-74
Main language of publication
English
Received
1993-07-02
Accepted
1994-05-05
Published
1995
Exact and natural sciences