ArticleOriginal scientific text

Title

Zeros of quadratic zeta-functions on the critical line

Authors 1

Affiliations

  1. School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

Bibliography

  1. R. Balasubramanian, An improvement of a theorem of Titchmarsh on the mean square of |ζ(1/2 +it)|, Proc. London Math. Soc. (3) 36 (1978), 540-576.
  2. R. Balasubramanian and K. Ramachandra, Proof of some conjectures on the mean-value of Titchmarsh series. I, Hardy-Ramanujan J. 13 (1990), 1-20.
  3. B. C. Berndt, The number of zeros of the Dedekind zeta-function on the critical line, J. Number Theory 3 (1971), 1-6.
  4. K. Chandrasekharan and R. Narasimhan, Zeta-functions of ideal classes in quadratic fields and their zeros on the critical line, Comment. Math. Helv. 43 (1968), 18-30.
  5. E. Hecke, Über Dirichlet-Reihen mit Funktionalgleichung und ihre Nullstellen auf der Mittelgeraden, München Akad. Sitzungsber. II, 8 (1937), 73-95.
  6. E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), 664-699.
  7. E. Landau, Vorlesungen über Zahlentheorie, VII. Teil, Kap. 7, Chelsea, 1947.
  8. H. S. A. Potter, Approximate equations for the Epstein zeta-function, Proc. London Math. Soc. (2) 36 (1934), 501-515.
  9. H. S. A. Potter and E. C. Titchmarsh, The zeros of Epstein's zeta-functions, Proc. London Math. Soc. 39 (1935), 372-384.
  10. K. Ramachandra, Progress towards a conjecture on the mean-value of Titchmarsh series, in: Recent Progress in Analytic Number Theory, H. Halberstam and C. Hooley (eds.), Vol. 1, Academic Press, 1981, 303-318.
  11. H. M. Stark, L-functions and character sums for quadratic forms (I), Acta Arith. 14 (1968), 35-50.
  12. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., revised by D. R. Heath-Brown, Oxford Sci. Publ., Clarendon Press, Oxford, 1986.
Pages:
21-38
Main language of publication
English
Received
1993-04-23
Accepted
1993-12-10
Published
1995
Exact and natural sciences