Department of Mathematics, University of Turku, SF-20500 Turku, Finland
Bibliografia
[1] D. R. Heath-Brown, The mean value theorem for the Riemann zeta-function, Mathematika 25 (1978), 177-184.
[2] A. Ivić, The Riemann Zeta-Function, Wiley, New York, 1985.
[3] A. Ivić, Lectures on Mean Values of the Riemann Zeta-Function, Lectures on Math. and Physics 82, Tata Inst. Fund. Res., Springer, Bombay, 1991.
[4] I. Kiuchi, On an exponential sum involving the arithmetic function $σ_a(n)$, Math. J. Okayama Univ. 29 (1987), 193-205.
[5] K. Matsumoto, The mean square of the Riemann zeta-function in the critical strip, Japan. J. Math. 15 (1989), 1-13.
[6] T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math. Oxford (2) 38 (1987), 337-343.
[7] H. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math. Soc. (2) 8 (1974), 73-82.
[8] Y. Motohashi, A note on the mean value of the zeta and L-functions IV, Proc. Japan Acad. Ser. A 62 (1986), 311-313.
[9] Y. Motohashi, Lectures on the Riemann-Siegel formula, Ulam Seminar, Department of Math., University of Colorado, Boulder, 1987.
[10] E. Preissmann, Sur la moyenne de la fonction zêta, in: Analytic Number Theory and Related Topics, K. Nagasaka (ed.), World Scientific, 1993, 119-125.
[11] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford Univ. Press, London, 1937.
[12] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford Univ. Press, London, 1951
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav68i4p369bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.