ArticleOriginal scientific text

Title

The mean square of the Riemann zeta-function in the critical strip II

Authors 1, 2

Affiliations

  1. Department of Mathematics, Faculty of Education, Iwate University, Morioka 020, Japan
  2. Department of Mathematics, University of Turku, SF-20500 Turku, Finland

Bibliography

  1. D. R. Heath-Brown, The mean value theorem for the Riemann zeta-function, Mathematika 25 (1978), 177-184.
  2. A. Ivić, The Riemann Zeta-Function, Wiley, New York, 1985.
  3. A. Ivić, Lectures on Mean Values of the Riemann Zeta-Function, Lectures on Math. and Physics 82, Tata Inst. Fund. Res., Springer, Bombay, 1991.
  4. I. Kiuchi, On an exponential sum involving the arithmetic function σa(n), Math. J. Okayama Univ. 29 (1987), 193-205.
  5. K. Matsumoto, The mean square of the Riemann zeta-function in the critical strip, Japan. J. Math. 15 (1989), 1-13.
  6. T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math. Oxford (2) 38 (1987), 337-343.
  7. H. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math. Soc. (2) 8 (1974), 73-82.
  8. Y. Motohashi, A note on the mean value of the zeta and L-functions IV, Proc. Japan Acad. Ser. A 62 (1986), 311-313.
  9. Y. Motohashi, Lectures on the Riemann-Siegel formula, Ulam Seminar, Department of Math., University of Colorado, Boulder, 1987.
  10. E. Preissmann, Sur la moyenne de la fonction zêta, in: Analytic Number Theory and Related Topics, K. Nagasaka (ed.), World Scientific, 1993, 119-125.
  11. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford Univ. Press, London, 1937.
  12. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford Univ. Press, London, 1951
Pages:
369-382
Main language of publication
English
Received
1994-03-21
Published
1994
Exact and natural sciences