ArticleOriginal scientific text
Title
On strong Lehmer pseudoprimes in the case of negative discriminant in arithmetic progressions
Authors 1, 2
Affiliations
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland
- Technical University in Białystoki, Wiejska 45, 15-351 Białystok, Poland
Bibliography
- L. K. Durst, Exceptional real Lehmer sequences, Pacific J. Math. 9 (1959), 437-441.
- D. H. Lehmer, An extended theory of Lucas functions, Ann. of Math. (2) 31 (1930), 419-448.
- A. Rotkiewicz, On the pseudoprimes of the form ax+b with respect to the sequence of Lehmer, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 349-354.
- A. Rotkiewicz, On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L, Q in arithmetic progressions, Math. Comp. 39 (1982), 239-247.
- A. Schinzel, The intrinsic divisors of Lehmer numbers in the case of negative discriminant, Ark. Mat. 4 (1962), 413-416.
- C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers, in: Transcendence Theory: Advances and Applications, Academic Press, 1977, 79-92.
- M. Ward, The intrinsic divisors of Lehmer numbers, Ann. of Math. (2) 62 (1955), 230-236.