ArticleOriginal scientific text
Title
Upper bounds for class numbers of real quadratic fields
Authors 1
Affiliations
- Department of Mathematics, Zhanjiang Teacher's College, P.O. Box 524048, Zhanjiang, Guangdong, P.R. China
Bibliography
- T. Agoh, A note on unit and class number of real quadratic fields, Acta Math. Sinica (N.S.) 5 (1989), 281-288.
- O. Bernard, Groupes des classes d'idéaux des corps quadratiques réels
, 1 < d ≤ 24572, Théorie des nombres, Années 1986/87-1987/88, Fasc. 2, 65 pp., Besançon, 1988. - M. Gut, Abschätzungen für die Klassenzahlen der quadratischen Körper, Acta Arith. 8 (1962), 113-122.
- S. Louboutin, Majoration au point 1 des fonctions L associées aux caractères de Dirichlet primitifs, ou au caractère d'une extension quadratique d'un corps quadratique imaginaire principal, J. Reine Angew. Math. 419 (1991), 213-219.
- S. Louboutin, Majoration explicites de |L(1,χ)|, C. R. Acad. Sci. Paris Sér. I 316 (1993), 11-14.
- M. Newman, Bounds for class numbers, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 70-77.
- K. Petr, Sur l'équation de Pell, Časopis Pest. Mat. Fys. 56 (1927), 57-66 (in Czech).
- R. G. Stanton, C. Sudler, Jr., and H. C. Williams, An upper bound for the period of the simple continued fraction for √D, Pacific J. Math. 67 (1976), 525-536.
- H. C. Williams and J. Broere, A computational technique for evaluating L(1,χ) and the class number of a real quadratic field, Math. Comp. 30 (1976), 887-893.