ArticleOriginal scientific text
Title
On arithmetic progressions with equal products
Authors 1, 1, 2
Affiliations
- School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
- Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
Bibliography
- D. W. Boyd and H. H. Kisilevsky, The diophantine equation u(u+1)(u+2)(u+3) = v(v+1)(v+2), Pacific J. Math. 40 (1972), 23-32.
- B. Brindza, On S-integral solutions of the equation
, Acta Math. Hungar. 44 (1984), 133-139. - J. W. S. Cassels, Factorization of polynomials in several variables, in: Proc. 15th Scandinavian Congress, Oslo 1968, Lecture Notes in Math. 118, Springer, 1970, 1-17.
- A. Ehrenfeucht, A criterion for absolute irreducibility of polynomials, Prace Mat. 2 (1958), 167-169 (in Polish).
- R. A. MacLeod and I. Barrodale, On equal products of consecutive integers, Canad. Math. Bull. 13 (1970), 255-259.
- L. J. Mordell, On the integer solutions of y(y+1) = x(x+1)(x+2), Pacific J. Math. 13 (1963), 1347-1351.
- T. J. Rivlin, The Chebyshev Polynomials, Wiley, New York, 1974.
- N. Saradha and T. N. Shorey, On the ratio of two blocks of consecutive integers, Proc. Indian Acad. Sci. (Math. Sci.) 100 (1990), 107-132.
- N. Saradha and T. N. Shorey, On the equation (x+1)...(x+k) = (y+1)...(y+mk) with m = 3,4, Indag. Math. 2 (1991), 489-510.
- N. Saradha and T. N. Shorey, On the equation (x+1)...(x+k) = (y+1)...(y+mk), Indag. Math. 3 (1992), 79-90.
- N. Saradha and T. N. Shorey, On the equation x(x+d)...(x+(k-1)d) = y(y+d)...(y+(mk-1)d), Indag. Math. 3 (1992), 237-242.
- N. Saradha and T. N. Shorey, On the equation x(x+d₁)...(x+(k-1)d₁) = y(y+d₂)...(y+(mk-1)d₂), Proc. Indian Acad. Sci. (Math. Sci.) 104 (1994).
- N. Saradha, T. N. Shorey and R. Tijdeman, On arithmetic progressions of equal lengths with equal products, Math. Proc. Cambridge Philos. Soc., to appear.
- A. Schinzel, Selected Topics on Polynomials, University of Michigan Press, Ann Arbor, 1982.
- T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, 1986.