ArticleOriginal scientific text
Title
Mean square value of exponential sums related to representation of integers as sum of two squares
Authors 1, 1
Affiliations
- School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, U.S.A.
Bibliography
- [B] P. M. Bleher, On the distribution of the number of lattice points inside a family of convex ovals, Duke Math. J. 67 (1992), 461-481.
- i[BCDL] P. M. Bleher, Z. Cheng, F. J. Dyson and J. L. Lebowitz, Distribution of the error term for the number of lattice points inside a shifted circle, Comm. Math. Phys. 154 (1993), 433-469.
- [BD] P. M. Bleher and F. J. Dyson, The variance of the error function in the shifted circle problem is a wild function of the shift, Comm. Math. Phys., to appear.
- [C] H. Cramér, Über zwei Sätze von Herrn G. H. Hardy, Math. Z. 15 (1922), 201-210.
- [H] G. H. Hardy, The average order of the arithmetic functions P(x) and Δ(x), Proc. London Math. Soc. 15 (1916), 192-213.
- [HL] G. H. Hardy and J. E. Littlewood, Tauberian theorems concerning power series and Dirichlet series whose coefficients are positive, Proc. London Math. Soc. 13 (1914), 174.
- [HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford, 1960.
- [H-B] D. R. Heath-Brown, The distribution and moments of the error term in the Dirichlet divisor problem, Acta Arith. 60 (1992), 389-415.