ArticleOriginal scientific text

Title

On x³ + y³ + z³ = 3μxyz and Jacobi polynomials

Authors 1

Affiliations

  1. Department of Mathematics, Tsuda College, Kodaira Tokyo, 187 Japan

Bibliography

  1. H. Bateman, Higher Transcendental Functions, Vol. 2, McGraw-Hill, 1953.
  2. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience, 1953.
  3. R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer, 1977.
  4. T. Honda, On the theory of commutative formal groups, J. Math. Soc. Japan 22 (1970), 213-246.
  5. T. Honda, Two congruence properties of Legendre polynomials, Osaka J. Math. 13 (1976), 131-133.
  6. J. P. Serre, Sur la topologie des variétés algébriques en caractéristique p, in: Œuvres, Vol. 1, 38, 501-530.
  7. J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer, 1986.
  8. N. Yui, Jacobi quartics, Legendre polynomials and formal groups, in: Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Math. 1326, Springer, 1988, 182-215.
Pages:
27-39
Main language of publication
English
Received
1993-11-24
Published
1994
Exact and natural sciences