ArticleOriginal scientific text

Title

On CM-fields with the same maximal real subfield

Authors 1

Affiliations

  1. Department of Mathematics, Tokai University, Hiratsuka 259-12, Japan

Bibliography

  1. B. Datskovsky and D. J. Wright, Density of discriminants of cubic extensions, J. Reine Angew. Math. 386 (1988), 116-138.
  2. H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields, II, Proc. Roy. Soc. London Ser. A 322 (1971), 405-420.
  3. E. Friedman, Iwasawa invariants, Math. Ann. 271 (1985), 13-30.
  4. H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Phisica-Verlag, Würzburg-Wien, 1970.
  5. K. Horie, A note on basic Iwasawa λ-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31-38.
  6. K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.
  7. Y. Kida, Cyclotomic ℤ₂-extensions of J-fields, J. Number Theory 14 (1982), 340-352.
  8. T. Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65-85.
  9. H. Naito, Indivisibility of class numbers of totally imaginary quadratic extensions and their Iwasawa invariants, J. Math. Soc. Japan 43 (1991), 185-194.
  10. J. Nakagawa and K. Horie, Elliptic curves with no rational points, Proc. Amer. Math. Soc. 104 (1988), 20-24.
  11. L. Rédei and H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74.
  12. L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982.
Pages:
219-227
Main language of publication
English
Received
1993-06-02
Accepted
1994-02-28
Published
1994
Exact and natural sciences