ArticleOriginal scientific text
Title
Some general problems on the number of parts in partitions
Authors 1
Affiliations
- Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Bibliography
- F. C. Auluck, S. Chowla and H. Gupta, On the maximum value of the number of partitions of n into k parts, J. Indian Math. Soc. (N.S.) 6 (1942), 105-112.
- P. Bateman and P. Erdős, Monotonicity of partition functions, Mathematika 3 (1956), 1-14.
- P. Erdős and J. Lehner, The distribution of the number of summands in the partitions of a positive integer, Duke Math. J. 8 (1941), 335-345.
- P. Erdős and P. Turán, On some general problems in the theory of partitions, I, Acta Arith. 18 (1971), 53-62.
- C. B. Haselgrove and H. N. V. Temperley, Asymptotic formulae in the theory of partitions, Proc. Cambridge Philos. Soc. 50 (1954), 225-241.
- I. I. Hirschman and D. V. Widder, The Convolution Transform, Princeton University Press, Princeton, 1955.
- G. Meinardus, Asymptotische Aussagen über Partitionen, Math. Z. 59 (1954), 388-398.
- L. B. Richmond, Asymptotic relations for partitions, J. Number Theory 7 (1975), 389-405.
- L. B. Richmond, The moments of partitions, II, Acta Arith. 28 (1975), 229-243.
- L. B. Richmond, Asymptotic relations for partitions, Trans. Amer. Math. Soc. 219 (1976), 379-385.
- K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions, Quart. J. Math. Oxford Ser. (2) 5 (1954), 241-259.
- W. Schwarz, Schwache asymptotische Eigenschaften von Partitionen, J. Reine Angew. Math. 232 (1968), 1-16.
- G. Szekeres, An asymptotic formula in the theory of partitions, I, Quart. J. Math. Oxford Ser. (2) 2 (1951), 85-108.
- G. Szekeres, Some asymptotic formulae in the theory of partitions, II, Quart. J. Math. Oxford Ser. (2) 4 (1953), 96-111.
- P. Turán, Combinatorics, partitions, group theory, in: Proc. Internat. Colloq. in Combin. Theory, Accad. Naz. Lincei, Rome, 1973, T. II, 1976, 181-200.