ArticleOriginal scientific text

Title

The number of solutions to cubic Thue inequalities

Authors 1

Affiliations

  1. Department of Mathematics, University of Colorado, Campus Box 395, Boulder, Colorado 80309, U.S.A.

Bibliography

  1. [B1] M. Bean, Areas of plane regions defined by binary forms, Ph.D. thesis, University of Waterloo, 1992.
  2. [B2] M. Bean, Bounds for the number of solutions of the Thue equation, M. thesis, University of Waterloo, 1988.
  3. [E] J. H. Evertse, Estimates for reduced binary forms, J. Reine Angew. Math. 434 (1993), 159-190.
  4. [EG] J. H. Evertse and K. Győry, Effective finiteness results for binary forms, Compositio Math. 79 (1991), 169-204.
  5. [M1] K. Mahler, Zur Approximation algebraischer Zahlen III, Acta Math. 62 (1934), 91-166.
  6. [M2] K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1969), 257-262.
  7. [S] W. Schmidt, Diophantine Approximations and Diophantine Equations, Lecture Notes in Math. 1467, Springer, New York, 1991.
  8. [T] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284-305.
Pages:
237-243
Main language of publication
English
Received
1993-06-26
Published
1994
Exact and natural sciences