ArticleOriginal scientific text

Title

On oscillations in the additive divisor problem, 1

Authors 1

Affiliations

  1. Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

Bibliography

  1. R. J. Anderson and H. M. Stark, Oscillation theorems, in: Lecture Notes in Math. 899, Springer, 1981, 79-106.
  2. J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982), 219-288.
  3. J.-M. Deshouillers and H. Iwaniec, Additive divisor problem, J. London Math. Soc. (2) 26 (1982), 1-14.
  4. A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, II, McGraw-Hill, 1953.
  5. M. Jutila, The additive divisor problem and exponential sums, in: Third Conference of the Canadian Number Theory Association, Kingston 1991, Clarendon Press, Oxford, 1993, 113-135.
  6. T. Kubota, Elementary Theory of Eisenstein Series, Wiley, New York, 1973.
  7. N. V. Kuznetsov, Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums, Math. USSR-Sb. 39 (1981), 299-342.
  8. N. V. Kuznetsov, Convolutions of the Fourier coefficients of the Eisenstein-Maass series, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 134 (1983), 43-84 (in Russian).
  9. E. Landau, Über einen Satz von Tschebyschef, Math. Ann. 61 (1905), 527-550.
  10. Y. Motohashi, The binary additive divisor problem, Ann. Sci. École Norm. Sup., to appear.
  11. Y. Motohashi, Spectral mean values of Maass waveform L-functions, J. Number Theory 42 (1992), 258-284.
  12. N. V. Proskurin, Summation formulas for generalized Kloosterman sums, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 82 (1979), 103-135 (in Russian).
  13. L. A. Takhtajan and A. I. Vinogradov, The Gauss-Hasse hypothesis on real quadratic fields with class number one, J. Reine Angew. Math. 335 (1982), 40-87.
  14. L. A. Takhtajan and A. I. Vinogradov, The zeta-function of the additive divisor problem and the spectral decomposition of the automorphic Laplacian, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 134 (1984), 84-116 (in Russian).
  15. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed. revised by D. R. Heath-Brown, Clarendon Press, Oxford, 1986.
Pages:
63-69
Main language of publication
English
Received
1993-04-20
Published
1994
Exact and natural sciences