ArticleOriginal scientific text

Title

Descent via isogeny in dimension 2

Authors 1

Affiliations

  1. Department of Pure Mathematics and Mathematical Statistics, Cambridge University, 16 Mill Lane, Cambridge CB2 1SB, England

Bibliography

  1. J. B. Bost et J.-F. Mestre, Moyenne arithmético-géometrique et périodes des courbes de genre 1 et 2, Gaz. Math. 38 (1988), 36-64.
  2. J. W. S. Cassels, Arithmetic on curves of genus 1, I. On a conjecture of Selmer, J. Reine Angew. Math. 202 (1959), 52-59.
  3. J. W. S. Cassels, The Mordell-Weil group of curves of genus 2, in: Arithmetic and Geometry papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday, Vol. 1, Arithmetic, Birkhäuser, Boston, 1983, 29-60.
  4. J. W. S. Cassels, Lectures on Elliptic Curves, London Math. Soc. Stud. Texts 24, Cambridge University Press, 1991.
  5. C. Chabauty, Sur les points rationnels des variétés algébriques dont l'irregularité et supérieur à la dimension, C. R. Acad. Sci. Paris 212 (1941), 882-885.
  6. R. F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), 765-780.
  7. E. V. Flynn, The Jacobian and formal group of a curve of genus 2 over an arbitrary ground field, Math. Proc. Cambridge Philos. Soc. 107 (1990), 425-441.
  8. E. V. Flynn, The group law on the Jacobian of a curve of genus 2, J. Reine Angew. Math., to appear.
  9. D. M. Gordon and D. Grant, Computing the Mordell-Weil rank of Jacobians of curves of genus 2, Trans. Amer. Math. Soc., to appear.
  10. D. Grant, Formal groups in genus 2, J. Reine Angew. Math. 411 (1990), 96-121.
  11. W. G. McCallum, The arithmetic of Fermat curves, Math. Ann. 294 (1992), 503-511.
  12. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986
Pages:
23-43
Main language of publication
English
Received
1992-12-22
Published
1994
Exact and natural sciences