ArticleOriginal scientific text
Title
Squares in products from a block of consecutive integers
Authors 1, 2
Affiliations
- Institute of Mathematical Sciences, Madras 600 113, India
- Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India
Bibliography
- A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65 (1969), 439-444.
- P. Erdős, Note on the product of consecutive integers (I), J. London Math. Soc. 14 (1939), 194-198.
- P. Erdős, On the product of consecutive integers III, Indag. Math. 17 (1955), 85-90.
- P. Erdős and J. Turk, Products of integers in short intervals, Acta Arith. 44 (1984), 147-174.
- M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170.
- T. Nagell, Introduction to Number Theory, Wiley, 1951.
- K. Ramachandra, Some problems of analytic number theory, Acta Arith. 31 (1976), 313-324.
- O. Rigge, Über ein diophantisches Problem, in: 9th Congress Math. Scand. Helsingfors, 1938, Mercator, Helsingfors, 1939, 155-160.
- T. N. Shorey, Perfect powers in values of certain polynomials at integer points, Math. Proc. Cambridge Philos. Soc. 99 (1986), 195-207.
- T. N. Shorey, Perfect powers in products of integers from a block of consecutive integers, Acta Arith. 49 (1987), 71-79.
- T. N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical progression, Compositio Math. 75 (1990), 307-344.
- V. G. Sprindžuk, Hyperelliptic diophantine equation and class numbers of ideals, Acta Arith. 30 (1976), 95-108 (in Russian).