ArticleOriginal scientific text

Title

Squares in products from a block of consecutive integers

Authors 1, 2

Affiliations

  1. Institute of Mathematical Sciences, Madras 600 113, India
  2. Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

Bibliography

  1. A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65 (1969), 439-444.
  2. P. Erdős, Note on the product of consecutive integers (I), J. London Math. Soc. 14 (1939), 194-198.
  3. P. Erdős, On the product of consecutive integers III, Indag. Math. 17 (1955), 85-90.
  4. P. Erdős and J. Turk, Products of integers in short intervals, Acta Arith. 44 (1984), 147-174.
  5. M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170.
  6. T. Nagell, Introduction to Number Theory, Wiley, 1951.
  7. K. Ramachandra, Some problems of analytic number theory, Acta Arith. 31 (1976), 313-324.
  8. O. Rigge, Über ein diophantisches Problem, in: 9th Congress Math. Scand. Helsingfors, 1938, Mercator, Helsingfors, 1939, 155-160.
  9. T. N. Shorey, Perfect powers in values of certain polynomials at integer points, Math. Proc. Cambridge Philos. Soc. 99 (1986), 195-207.
  10. T. N. Shorey, Perfect powers in products of integers from a block of consecutive integers, Acta Arith. 49 (1987), 71-79.
  11. T. N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical progression, Compositio Math. 75 (1990), 307-344.
  12. V. G. Sprindžuk, Hyperelliptic diophantine equation and class numbers of ideals, Acta Arith. 30 (1976), 95-108 (in Russian).
Pages:
213-220
Main language of publication
English
Received
1992-08-17
Published
1993
Exact and natural sciences