ArticleOriginal scientific text

Title

The Pólya-Vinogradov inequality for totally real algebraic number fields

Authors 1

Affiliations

  1. Zum Donnerberg 14, D-W-3554 Gladenbach, Germany

Bibliography

  1. K. M. Bartz, On a theorem of A. V. Sokolovskiĭ, Acta Arith. 34 (1978), 113-126.
  2. G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approximation: The lattice-points of a right-handed triangle, Proc. London Math. Soc. (2) 20 (1921), 15-36.
  3. J. G. Hinz, Character sums in algebraic number fields, J. Number Theory 17 (1983), 52-70.
  4. K. C. Lee, On the average order of characters in totally real algebraic number fields, Chinese J. Math. 7 (1979), 77-90.
  5. K. Mahler, Inequalities for ideal bases in algebraic number fields, J. Austral. Math. Soc. 4 (1964), 425-448.
  6. H. L. Montgomery and R. C. Vaughan, Mean values of character sums, Canad. J. Math. 31 (1979), 476-487.
  7. G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste, Göttinger Nachr. (1918), 21-29.
  8. U. Rausch, Character sums in algebraic number fields, to appear.
  9. G. J. Rieger, Verallgemeinerung der Siebmethode von A. Selberg auf algebraische Zahlkörper. III, J. Reine Angew. Math. 208 (1961), 79-90.
  10. M. M. Skriganov, Lattices in algebraic number fields and uniform distribution mod 1, Leningrad Math. J. 1 (1990), 535-558.
  11. D. C. Spencer, The lattice points of tetrahedra, J. Math. Phys. 21 (1942), 189-197.
  12. T. Tatuzawa, Fourier analysis used in analytic number theory, Acta Arith. 28 (1975), 263-272
Pages:
197-212
Main language of publication
English
Received
1992-06-19
Accepted
1993-02-01
Published
1993
Exact and natural sciences