ArticleOriginal scientific text
Title
Nombres -libres dans les petits intervalles
Authors 1
Affiliations
- Département de Mathématiques, Unité Associée au Cnrs, URA 750, Université de Nancy I, 54506 Vandœuvre-lès-Nancy, France
Bibliography
- G. Bantle and F. Grupp, On a problem of Erdős and Szemerédi, J. Number Theory 22 (1986), 280-288.
- E. Bombieri, J. B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203-251.
- E. Bombieri and H. Iwaniec, On the order of ζ(1/2+it), Ann. Scuola Norm. Sup. Pisa 13 (1986), 449-472.
- N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Indag. Math. 12 (1949-1950), 247-256.
- P. Erdős, On the difference of consecutive terms of sequences defined by divisibility properties, Acta Arith. 12 (1966), 175-182.
- M. Filaseta and O. Trifonov, On gaps between squarefree numbers II, J. London Math. Soc. (2) 45 (1992), 215-221.
- E. Fouvry and H. Iwaniec, Exponential sums for monomials, J. Number Theory 33 (1989), 311-333.
- J. B. Friedlander, Integers free from large and small primes, Proc. London Math. Soc. (3) 33 (1976), 565-576.
- S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge University Press, 1991.
- D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, J. Number Theory 16 (1983), 242-266.
- E. Szemerédi, On the difference of consecutive terms of sequences defined by divisibility properties II, Acta Arith. 23 (1973), 359-361.
- J. Wu, Sur trois questions classiques de crible: nombres premiers jumeaux, nombres
et nombres -libres, Thèse de Doctorat, Université d'Orsay, 1990