ArticleOriginal scientific text

Title

Nombres -libres dans les petits intervalles

Authors 1

Affiliations

  1. Département de Mathématiques, Unité Associée au Cnrs, URA 750, Université de Nancy I, 54506 Vandœuvre-lès-Nancy, France

Bibliography

  1. G. Bantle and F. Grupp, On a problem of Erdős and Szemerédi, J. Number Theory 22 (1986), 280-288.
  2. E. Bombieri, J. B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203-251.
  3. E. Bombieri and H. Iwaniec, On the order of ζ(1/2+it), Ann. Scuola Norm. Sup. Pisa 13 (1986), 449-472.
  4. N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Indag. Math. 12 (1949-1950), 247-256.
  5. P. Erdős, On the difference of consecutive terms of sequences defined by divisibility properties, Acta Arith. 12 (1966), 175-182.
  6. M. Filaseta and O. Trifonov, On gaps between squarefree numbers II, J. London Math. Soc. (2) 45 (1992), 215-221.
  7. E. Fouvry and H. Iwaniec, Exponential sums for monomials, J. Number Theory 33 (1989), 311-333.
  8. J. B. Friedlander, Integers free from large and small primes, Proc. London Math. Soc. (3) 33 (1976), 565-576.
  9. S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge University Press, 1991.
  10. D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, J. Number Theory 16 (1983), 242-266.
  11. E. Szemerédi, On the difference of consecutive terms of sequences defined by divisibility properties II, Acta Arith. 23 (1973), 359-361.
  12. J. Wu, Sur trois questions classiques de crible: nombres premiers jumeaux, nombres P et nombres -libres, Thèse de Doctorat, Université d'Orsay, 1990
Pages:
97-116
Main language of publication
French
Received
1992-10-16
Accepted
1993-03-23
Published
1993
Exact and natural sciences