ArticleOriginal scientific text

Title

Sums of distinct residues mod p

Authors 1

Affiliations

  1. Department of Mathematics, University of Bergen, Allégt. 55, N-5007 Bergen, Norway

Bibliography

  1. W. Brakemeier, Ein Beitrag zur additiven Zahlentheorie, Dissertation, Tech. Univ. Braunschweig, 1973.
  2. W. Brakemeier, Eine Anzahlformel von Zahlen modulo n, Monatsh. Math. 85 (1978), 277-282.
  3. A. L. Cauchy, Recherches sur les nombres, J. École Polytech. 9 (1813), 99-116.
  4. I. Chowla, A theorem on the addition of residue classes, Proc. Indian Acad. Sci. 2 (1935), 242-243.
  5. H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935), 30-32.
  6. H. Davenport, A historical note, J. London Math. Soc. 22 (1947), 100-101.
  7. P. Erdős, Some problems in number theory, in: Computers in Number Theory, A. O. L. Atkin and B. J. Birch (eds.), Academic Press, 1971, 405-414.
  8. P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Enseign. Math., Genève, 1980.
  9. P. Erdős and H. Heilbronn, On the addition of residue classes mod p, Acta Arith. 9 (1964), 149-159.
  10. G. A. Freiman, Foundations of a Structural Theory of Set Addition, Transl. Math. Monographs 37, Amer. Math. Soc., Providence, R.I., 1973.
  11. R. K. Guy, Unsolved Problems in Number Theory, Springer, New York, 1981.
  12. W. A. McWorter, On a theorem of Mann, Amer. Math. Monthly 71 (1964), 285-286.
  13. J. M. Pollard, A generalisation of the theorem of Cauchy and Davenport, J. London Math. Soc. 8 (1974), 460-462.
  14. J. M. Pollard, Addition properties of residue classes, J. London Math. Soc. 11 (1975), 147-152.
  15. U.-W. Rickert, Über eine Vermutung in der additiven Zahlentheorie, Dissertation, Tech. Univ. Braunschweig, 1976.
Pages:
181-184
Main language of publication
English
Received
1993-02-22
Published
1993
Exact and natural sciences