ArticleOriginal scientific text

Title

The application of a new mean value theorem to the fractional parts of polynomials

Authors 1

Affiliations

  1. Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1003, U.S.A.

Bibliography

  1. R. C. Baker, Diophantine Inequalities, London Math. Soc. Monographs (N.S.) 1, Clarendon Press, Oxford, 1986.
  2. R. C. Baker, J. Brüdern and G. Harman, The fractional part of αnk for square-free n, Quart. J. Math. Oxford (2) 42 (1991), 421-431.
  3. I. Danicic, Contributions to Number Theory, Ph.D. Thesis, London, 1957.
  4. G. Harman, Trigonometric sums over primes I, Mathematika 28 (1981), 249-254.
  5. D. R. Heath-Brown, On the fractional part of αnk, Mathematika 35 (1988), 28-37.
  6. H. Heilbronn, On the distribution of the sequence n²θ (mod 1), Quart. J. Math. Oxford 19 (1948), 249-256.
  7. K. Thanigasalam, Some new estimates for G(k) in Waring's problem, Acta Arith. 42 (1982), 73-78.
  8. R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Tracts Math. 80, Cambridge Univ. Press, 1981.
  9. R. C. Vaughan, A new iterative method in Waring's problem, Acta Math. 162 (1989), 1-71.
  10. R. C. Vaughan, A new iterative method in Waring's problem, II, J. London Math. Soc. (2) 39 (1989), 219-230.
  11. R. C. Vaughan and T. D. Wooley, Further improvements in Waring's problem, to appear.
  12. I. M. Vinogradov, Analytischer Beweis des Satzes über die Verteilung der Bruch- teile eines ganzen Polynoms, Bull. Acad. Sci. USSR (6) 21 (1927), 567-578.
  13. H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352.
  14. T. D. Wooley, Large improvements in Waring's problem, Ann. of Math. 135 (1992), 131-164.
Pages:
163-179
Main language of publication
English
Received
1993-01-18
Published
1993
Exact and natural sciences